
CS33 Homework Assignment 1  
Due 11:59pm, September 13, 2024 

 
1. Arguments to C functions are “passed by value”, meaning that the called function is given copies 

of its arguments. Thus, in the following code, func1 is given a copy of the argument x. 
 

int func1(int a) { 
a = a+2; 
printf("a + 2 = %d\n", a); 
return 1; 

} 
 
int main() { 

int x = 3; 
func1(x); 
if (x != 3) 
 printf("shouldn’t happen\n"); 
return 0; 

} 
 
An alternative approach to passing arguments is to pass them “by reference” — the called function 
receives a reference to the variables provided by the caller. In our above example, if x were passed 
to func1 by reference, whenever func1 refers to a, it’s really referring to x. If this were done, then 
x’s value would appear to be changed in main on return from func1. 
 
As shown in class, we can achieve the effect of passing by reference by using pointers. Thus we 
might rewrite the above code as follows: 
 
int func2(int *a) { 

*a = *a+2; 
printf("*a + 2 = %d\n", *a); 
return 1; 

} 
 
int main() { 

int x = 3; 
func2(&x); 
if (x != 3) 
 printf("should happen\n"); 
return 0; 

} 
 
Yet another approach to passing arguments is to pass them by “value-result”. This, as with pass by 
value, entails passing to the called function the current value of the argument. But on return from 
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the function, the possibly modified value of the argument is passed back to the caller, updating the 
original argument. 
 
Consider func3 below. 
 
int func3(int a1, int a2) { 

a2 = 2; 
a1 = 1; 
return 1; 

} 
 

a) One might ask whether calls to func3 have the same effect if func3’s arguments are passed 
by reference as they do if its arguments are passed by value-result. It turns out that there 
are cases in which the effects are different. Provide an example showing this; i.e., provide 
an example of passing arguments to func3 such that their values, after the call, are different 
depending on the argument-passing technique. You may assume that arguments are copied 
in the order in which they appear in the argument list. 

 
 
C is sometimes adapted for use in remote procedure call (RPC) environments in which the calling 
function and the called function are on separate computers. Thus, when placing a call, the 
arguments are communicated to the called function over a network, the called function is 
computed on the remote machine, and any return values are transferred back to the caller over the 
network. 
 
A problem with this approach is that, if implemented naively, pointers won’t work: one passes a 
pointer to the remote machine, but the remote machine can’t use it, since the value pointed to is on 
the calling machine. To get around this problem, rather than simply pass the pointer, the value the 
pointer points to is transferred to the remote machine. A new pointer is created on the remote 
machine that points to this copy of the transmitted value. When the remote procedure returns, the 
modified value is transmitted back to the caller, replacing what the caller’s original pointer pointed 
to. 
 
For example, looking back at the example containing func2, when it is called by main, the pointer 
to x is not passed to func2, but the value pointed to is (3). In func2, a new pointer (a) is created that 
points to the 3 that’s been copied to the computer on which func2 is running. What a points to is 
incremented by 2, and the modified value (5) is passed back to main. This modified value 
overwrites what the original pointer (&x) pointed to, thus x’s value is updated to be 5. 
 
Consider func4 below. 
 
int func4(int a1[], int size1, int a2[], int size2) { 

a1[0] = 8; 
a2[size2-1] = 8; 
return 1; 

} 
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If func4 is implemented as a remote procedure, using a version of C that’s been adapted as 
discussed above, then when it is called the arrays represented by its first and third arguments are 
transmitted over the network to its machine — they’re effectively copied. On return from func4, 
the arrays are transmitted back to the caller, updating their original values. 
 

b) Is it always the case that calling func4 using standard C pass-by-value in a non-remote 
environment will provide the same result as calling it in a remote environment using a 
version of C adapted for RPC? 

 
 


