
 

 

CS33 Homework Assignment 2 
Due 11:59pm September 20, 2024 

1. Consider the following 2D array in C: 
 

int X[A][B]; 
  

a. We’d like to work with row 1 of the array, i.e., the data in X[1][0], X[1][1], X[1][2], etc. In 
particular, we want an int * that refers to a 1D array containing this row. Can this be done 
by setting such a pointer to point to the row’s first element, or must we copy the elements of 
the row into a separate 1D array? 

 
b. We’d now like to work with column 1 of the array, i.e., the data in X[0][1], X[1][1], X[2][1], 

etc. In particular, we want an int * that refers to a 1D array containing this column. Can this 
be done by setting such a pointer to point to the column’s first element, or must we copy the 
elements of the column into a separate 1D array? 

 
2. We want a (3D) array of the 2D arrays of problem 1, i.e., we’d like to organize C AxB arrays as a 

single CxAxB array. 
a. How does one declare an array of C of the 2D arrays of problem 1? 

 
b. We would like a function func that takes an int as an argument and returns a pointer to our 

2D array (of problem 1). How would one declare such a function? 
 

c. We would like a pointer ptr that refers to a 2D array, so that we can use it to iterate through 
the array of such 2D arrays. How would one declare such a pointer? (It’s definitely not 
cheating to test your answer using gcc!) 
 

3. What’s wrong, if anything, with each of the following? 
a.     

struct array_struct { 
int array[20]; 

}; 
 
struct array_struct init(void) { 

struct array_struct a_s; 
for (int i=0; i<20; i++) 

a_s.array[i] = i; 
return a_s; 

} 
 
int main(void) { 

struct array_struct x = init(); 
// ... 

} 



 

 - 2 - 

 
b.     

int func(int a) { 
static int array[a]; 
// ... 

} 
 

c.     
int *array; 
 
void init(void) { 

int A[20]; 
array = A; 

} 
 
int main(void) { 

init(); 
array[7] = 6; 
// ... 

} 
 

d.     
int main(int argc, char *argv[]) { 

int a=0, b=0; 
int c; 
 
if (argc != 3) { 

fprintf(stderr, "Wrong number of args\n"); 
exit(1); 

} 
a = atoi(argv[1]); 
b = atoi(argv[2]); 
switch(a) { 
case 0: 

c=b; 
break; 

case 1: 
a=b; 
break; 

default: 
c=a; 

} 
return a+b+c; 

} 
 

 

 


