

CS33 Homework Assignment 4
Due 11:59pm, October 4, 2024

1. C currently does not support a 128-bit integer data type. In this problem, you’re going to do some

of the work to implement such a type. We’ll stick with unsigned integers for now.
a. We need an appropriate typedef. Define a type, ulong128_t, that allows us to easily access

the low-order 64 bits and the high-order 64 bits. Keep in mind that x86-64 is a little-endian
architecture.

b. If we’re going to make use of this type, we need, among many other things, an

implementation of multiplication. Produce an implementation, in x86-64 assembler, of
Mult128:

void Mult128(ulong128_t *op1, ulong128_t *op2, ulong128_t *res);

On return, res should point to a ulong128_t containing the product of *op1 and *op2. You
should expect your answer to use around 12 instructions, including the ret at the end. Some
hints:

i. You might first write an approximate version of Mult128 in C, compile it
with the –S (which tells gcc to produce assembler code) and –O1 flags, and
work with the gcc-produced assembler code (which will be in a .s file)

ii. The product of (a + b) and (c + d) is ac + ad + bc + bd. (You probably knew
this!)

iii. The portion of the result that’s greater than or equal to 2128 can be ignored,
since we’re concerned only with the low-order 128 bits of the product.

iv. The unsigned multiply instruction, mulq, produces a 128-bit result from two
64-bit operands. The multiplicand is in %rax (and thus isn’t mentioned
explicitly as an operand). The multiplier is given as the only operand to the
instruction. The high-order 64 bits of the result will be put in %rdx (caution,
this register also holds the third argument to the function!); the low-order 64
bits of the result will be put in %rax.

