
CSCI 1330 Homework Assignment 5
Due 11:59pm, October 18, 2024

1. We’re accustomed to stacks that seem to be able grow without bound. But suppose we’re running

in an environment in which, while there’s plenty of memory, it’s not necessarily available in large
contiguous pieces. Thus it might be necessary to have a segmented stack. At various points in the
execution of a program, it’s determined that the current stack is about to be exhausted, so we arrange
so that the next function call takes place on a different stack. In particular, we assume the existence
of the function runonstack:

int runonstack(int (*func)(int), int arg, long *stackp);

It calls func, passing it the argument arg, but arranges for func to execute on the stack that begins at
stackp (i.e., if the stack is considered an array of longs, stackp is the address of the last (highest
addressed) long in the array). Runonstack returns the int returned by func.

Your task is to implement runonstack in x86-64 assembler code. You might use the following code
to test your implementation:

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int runonstack(int(*func)(int), int arg, long *stack);

int test(int a) {
 printf("in test %d\n", a);

 if (--a > 0) {
 printf("returned %d\n", test(a));
 }

 return a;
}

long stack[1024];

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: test count\n");
 exit(1);
 }

 int count = atoi(argv[1]);

 int ret = runonstack(test, count, &stack[1023]);

 - 2 -

 printf("runonstack returned %d\n", ret);

 return 0;
}

Assuming your assembler code is in the file runonstack.s and the test program is in test.c, you can
create an executable called test by doing:

gcc –o test runonstack.s test.c –O1 -g

Note that arguments are passed in registers. The intended implementation of runonstack has ten
lines. It should start with the following code (which comprise two of the ten lines), so that your
code is given a name that can be referenced by your C code:

.globl runonstack

runonstack:

The remaining lines are all assembler instructions. Note that if func, the address of the function
that’s passed to runonstack, is copied to %rax, then to call the function one uses the instruction

call *%rax

