
CSCI 1330 Homework Assignment 6 
Due 11:59pm October 25, 2024 

 
 

1. Information about files is stored in the following data structures (see Lectures 19 and 20): 
i. directory entry 

ii. file-descriptor table 
iii. file-context structure 
iv. inode 

 
The directory entry and the inode are stored on disk and brought into memory when necessary; the 
other two exist only in memory. We know that a single file might be referenced by multiple directory 
entries as well as be open in multiple processes, perhaps multiple times in some of these processes. 
Access permissions (the permission vectors described in lecture 19) are checked just when a file is 
opened, and thus not on each read or write of the file. 
 
a. In which of the data structures does it make sense to store the size of a file (i.e., the byte offset 

of the location just after the last byte of the file)? 
 

b. In which of the data structures does it make sense to store the permission vector? 
 

c. When a read or write system call is executed, the location in the file at which the system call 
will take place is taken from the file-location field of the file-context structure. One option of 
the open system call is O_APPEND, which specifies that writes to the file always take place at 
the current end of the file. Explain how this is made to work, in terms of the data structures listed 
above. 

 
d. A directory is represented just like any other file, except that its contents are interpreted 

specially. In which of the above data structures is it indicated that a file is a directory? 
 

2. Unix’s I/O system calls, in particular read and write, were designed with the idea that the vast 
majority of I/O is sequential, i.e., starting at the beginning of a file and proceeding in order to the 
end. However, it is possible to do non-sequential (or random) I/O through the use of the lseek system 
call. This function simply sets the file location in the file-context structure, thus affecting where the 
next read or write takes place. 
 
A relatively new pair of Unix system calls is pread and pwrite, which work just like read and write, 
except that the file location is specified as an argument and the value in the file-context structure is 
ignored. This might be considered merely an optimization, allowing random I/O to be done in a 
single system call rather than two, but it turns out to be necessary in certain situations. What are 
these situations? 
 

 


