
CS33 Intro to Computer Systems II–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 2

Note the use of the comma in the initialization part of the for loop: the
initialization part may have multiple parts separated by commas, each
executed in turn.

CS33 Intro to Computer Systems II–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%d\n", fact(5));
 return 0;
}

int fact(int i) {
 int k;
 int res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

main
• is just another

function
• starts the program

All functions
• have a return type

CS33 Intro to Computer Systems II–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It

$ gcc –o fact fact.c
$./fact
120

Not only has the definition of main been placed before the definition of fact,
but also fact has been changed so that it now returns a float rather than an
int.

CS33 Intro to Computer Systems II–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

If a function, such as fact, is encountered by the compiler before it has
encountered a declaration or definition for it, the compiler assumes that the
function returns an int. This rather arbitrary decision is part of the language
for “backwards-compatibility” reasons — so that programs written in older
versions of C still compile on newer (post-1988) compilers.

CS33 Intro to Computer Systems II–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

$ gcc –o fact fact.c
main.c:27: warning: type mismatch with previous implicit
declaration
main.c:23: warning: previous implicit declaration of
'fact'
main.c:27: warning: 'fact' was previously implicitly
declared to return 'int'

$./fact
1079902208

Here we have a declaration of fact before its definition. (If the two are different,
gcc will complain.)

CS33 Intro to Computer Systems II–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

i
f

float fact(int i);

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=0,k=1; k<=i; k++)
 res = res * k;
 return res;
}

Declares the function

$./fact
120.000000

for (;;)
 printf(“C does not have methods!\n”);

CS33 Intro to Computer Systems II–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Methods

• C has functions
• Java has methods

– methods implicitly refer to objects
– C doesn’t have objects

• Don’t use the “M” word
– itʼs just wrong

?

CS33 Intro to Computer Systems II–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

Arguments are
passed by value

This doesn't work because, when a function is called, copies are made of the
arguments and it's these copies that are supplied to the function. Thus, if the
function modifies its arguments, it's modifying only the copies. This is known
as "pass by value".

CS33 Intro to Computer Systems II–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {
 int tmp;
 tmp = j; j = i; i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

$./a.out
a:4 b:8

Darn!

Note, this has been fixed in the (ancient) Fortran programming language (by recognizing
that literals such as "2" are special). Since C passes arguments by value, this has never
been a problem in C.

CS33 Intro to Computer Systems II–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why “pass by value”?

• Fortran, for example, passes arguments “by
reference”

• Early implementations had the following
problem (shown with C syntax):

int main() {
 function(2);
 printf("%d\n", 2);
}
void function(int x) {
 x = 3;
}

$./a.out
3

We'll discuss "what's an int" in a couple weeks.

II–11

CS33 Intro to Computer Systems II–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables and Memory

What does
int x;

do?

• It tells the compiler:
I want x to be the name of an area of memory
that’s big enough to hold an int.

What’s memory?

II–12

CS33 Intro to Computer Systems II–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory

• “Real” memory
– it’s complicated
– it involves electronics, semiconductors, physics,

etc.
– it’s not terribly relevant at this point

• “Virtual” memory
– the notion of memory as used by programs
– it involves logical concepts
– it’s how you should think about memory (most of

the time)

In the diagram, x is an int occupying bytes 134217728, 134217729, 134217730, and
134217731. Its address is 134217728; its size is 4 (bytes).

II–13

CS33 Intro to Computer Systems II–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Virtual Memory

• It’s a large array of bytes
– one byte is eight bits
– an int is four consecutive bytes
– so is a float
– a char is one byte

• The array index of a byte is its
address
– the address of a larger item is the

index of its first byte

virtual
memory

x

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

II–14

CS33 Intro to Computer Systems II–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables
• Where

– they refer to locations in memory
• Size

– how much memory they refer to
• Interpretation

– how to interpret the contents of memory

• All determined when they are declared
• None of the above change after declaration

int x; // sizeof(x) == 4
float y; // sizeof(y) == 4
char z; // sizeof(z) == 1

The “%p” format code in printf means to interpret the item being printed as
being a pointer.

CS33 Intro to Computer Systems II–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

int main() {
 int a = 4;
 printf("%p\n", &a);
}

$./a.out
134217728

Memory addresses in C

• In C
- you can get the memory

address of any variable
- just use the operator &

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a4

CS33 Intro to Computer Systems II–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• What is a C pointer?
– a variable that holds an address

• Pointers in C are “typed” (remember the promises)
– pointer to an int
– pointer to a char
– pointer to a float
– pointer to <whatever you can define>

• C has a syntax to declare pointer types
– things start to get complicated …

CS33 Intro to Computer Systems II–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%p\n", p);
}

$./a.out
134217728

p is a pointer to an int

p is assigned the address of a

if you follow p, you find an int

This slide assumes that pointers are 8 bytes long, which is the case for most
computers we are likely to use as part of this class.

Some compilers might choose to order p in memory before a.

Note that both a and p are variables. Thus each is associated with a memory
address, has a particular size, and has a particular interpretation. (Since an
int can be positive, zero or negative, but an address can be only non-negative,
their interpretations are slightly different. We’ll explain this thoroughly in an
upcoming lecture.)

CS33 Intro to Computer Systems II–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%p\n", p);
}

$./a.out
134217728

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

The size of a pointer depends upon the type of computer. On most computers
we use today, pointers have a size of 8 bytes. In some of our projects, we will
use “32-bit mode” in which pointers are 4 bytes.

CS33 Intro to Computer Systems II–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• Pointers are typed
– the types of the items they point to are known
– there is one exception (discussed later)

• Pointers are first-class citizens
– they can be passed to functions
– they can be stored in arrays and other data

structures
– they can be returned by functions

• Pointers have the properties of all variables
sizeof(int *) == sizeof(char *) == 8

CS33 Intro to Computer Systems II–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

What does this do?

void swap(int *i, int *j) {
 int *tmp;
 tmp = j; j = i; i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(&a, &b);
 printf("a:%d b:%d\n", a, b);
}

$./a.out
a:4 b:8

Damn!

Keep in mind that though we are changing p’s value (by assigning to it the
address of a), we are not changing the memory address associated with p – it
remains 134217732 (and its size remains 8).

CS33 Intro to Computer Systems II–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• Dereferencing pointers
– accessing/modifying the value

pointed to by a pointer

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%d\n", *p);
 *p = *p + 1;
 printf("%d\n", *p);
} $./a.out

4
5

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4 5

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

Note that “*p” and “a” refer to the same thing after p is assigned the address of
a.

“x += y” means the same as “x = x+y”. Similarly, there are −=, *=, and /=
operators.

CS33 Intro to Computer Systems II–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%d\n", *p);
 *p = *p + 1;
 *p += 3;
 printf("%d\n", a);
}

$./a.out
4
8

CS33 Intro to Computer Systems II–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

void swap(int *i, int *j) {
 int tmp;
 tmp = *j; *j = *i; *i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(&a, &b);
 printf("a:%d b:%d\n", a, b);
}

$./a.out
a:8 b:4

Hooray!

This quiz makes up a (very small) part of your grade.

II–24

CS33 Intro to Computer Systems II–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int doubleit(int *p) {
 p = 2(*p);
 return *p;
}
int main() {
 int a = 4;
 int b;
 b = doubleit(&a);
 printf("%d\n", a*b);
}

What’s printed?

a) 8
b) 16
c) 32
d) 64

The pointer p points to the first element of the array a. Thus a[0] and *p have
identical values.

CS33 Intro to Computer Systems II–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

a

a[0] a[1] a[2] a[6]

p

33

int main() {
 int a[7];
 int *p;
 p = &a[0];
 *p = 33;
}

Adding one to a pointer, rather than increasing its value by one, causes it to
refer to the next element. Thus, if the size of what it refers to is 4 (which is the
case for pointers to ints), adding one to the pointer increases its value by 4
(thus making it point to the next 4-byte value).

CS33 Intro to Computer Systems II–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

33 167

p

a

int main() {
 int a[7];
 int *p;
 p = &a[0];
 *p = 33;
 *(p+1) = 167;
}

Note that setting p equal to the address of the first element of the array a is
equivalent to setting p to the value of a.

CS33 Intro to Computer Systems II–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

p

a

Now p and a
have the
same value

int main() {
 int a[7];
 int *p;
 p = &a[0];
}

A pointer to the first element of an array can be used as if it were the array
itself. Thus, in this example, there’s little difference between how one uses “p”
and “a”.

An array's name represents a pointer to its first element.

CS33 Intro to Computer Systems II–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

33 167

p

a

int main() {
 int a[7];
 int *p;
 p = a;
 *p = 33;
 p[1] = 167;
}

The array name
represents a
pointer to its first
element

The name of a local array represents a pointer to its first element. But we treat
this pointer as a constant – it can’t be modified (if we did so, what would we do
with the storage that it previously pointed to?)

Note that we can assign to array arguments of functions – we explain this
soon.

CS33 Intro to Computer Systems II–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

can also be written as p = &a[0]; p = a;

a[i]; really is *(a+i)

• This makes sense, yet is weird ...
- p is of type int *

• it can be assigned to
int *q;
p = q;

- a sort of behaves like an int *
• but it can’t be assigned to in the same way

a = q;

All non-array variables, whether pointer or not, are treated the same way: the variable
name represents the contents of the memory associated with that variable.

II–30

CS33 Intro to Computer Systems II–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Non-Array Variables
• int i

– four bytes of memory are allocated for i
sizeof(i) == 4

– i represents the contents of this memory,
interpreted as an int

– it makes sense to do, for example
i = 7; // changes the contents of i

• int *p
– 8 bytes of memory are allocated for p

sizeof(p) == 8

– p represents the contents of this memory,
interpreted as an int *

– it makes sense to do, for example
p = &i; // changes the contents of p

Array variables are different from other variables. In particular, the name of an array
variable is associated with the address of the array, while the name of all other kinds of
variables are associated with the contents of the memory associated with that variable.
Furthermore, if we dereference an array variable, the result is not the contents of the
entire array, but just the contents of its first element.

II–31

CS33 Intro to Computer Systems II–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Array Variables
• int A[6]

– 24 bytes of memory are allocated for A
sizeof(A) == 24

– A represents the address of the first byte
– *A is the value of the first int (as if A were an int *)
– it does not make sense to do

A = &i; // would change the location of A

• int *p = A;
– 8 bytes of memory are allocated for p

sizeof(p) == 8

– p represents the contents of this memory
– *p is the same as A[0]
– it makes sense to do, for example

p = &i;

When an array variable is used in a function call, it continues to represent the address
of the array. Thus the called function is passed an address to the array, not the entire
array. Among the reasons for this design decision in C is that it allows large arrays to be
passed without having to copy all their elements. Note that since only the pointer to the
first element is passed, we need to supply the length of the array if we need to know
what it is (such as here where we are initializing its contents).

CS33 Intro to Computer Systems II–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Functions

int func(int *a, int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 *(a+i) = i;
 }
 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));
 return 0;
}

initialized with a copy
of the argument

We can use this syntax, which has exactly the same effect as that of the previous slide,
but makes it clear (to the human reader) that a is really an array.

CS33 Intro to Computer Systems II–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

int func(int a[], int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 a[i] = i;
 }
 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));
 return 0;
}

initialized with a copy
of the argument

Here we’ve added a size for the array in the function arguments. But, though this is
syntactically correct (gcc will not complain), the size is ignored. What’s passed to func is
just the pointer to the original array. Only with the nelements argument will func know
how large the array is.

CS33 Intro to Computer Systems II–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

int func(int a[500], int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 a[i] = i;
 }
 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));
 return 0;
}

ignored

Here is another example of passing an array to a function. We need to pass the
size of the array as well, assuming the function needs to know the array’s size.

CS33 Intro to Computer Systems II–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parameter passing
Passing arrays to a function

int average(int a[], int size) {
 int i; int sum;
 for(i=0,sum=0; i<size; i++)
 sum += a[i];
 return sum/size;
}
int main() {
 int a[100];
 …
 printf("%d\n",average(a,100));
}

CS33 Intro to Computer Systems II–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two entries of an array

void swap(int a[], int i, int j) {
 int tmp;
 tmp = a[j];
 a[j] = a[i];
 a[i] = tmp;
}

Note that C uses the same syntax as Java does for conditional (if) statements.
In addition to relational operators such as “==”, “!=”, “<”, “>”, “<=”, and “>=”,
there are the conditional operators “&&” and “||” (“logical and” and “logical
or”, respectively).

CS33 Intro to Computer Systems II–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Selection Sort

void selectsort(int array[], int length){
 int i, j, min;
 for (i = 0; i < length; ++i){
 /* find the index of the smallest item from i onward */
 min = i;
 for (j = i; j < length; ++j) {
 if (array[j] < array[min])
 min = j;
 }
 /* swap the smallest item with the i-th item */
 swap(array, i, min);
 }
 /* at the end of each iteration, the first i slots have the i
 smallest items */
}

In this example, we've declared array1 and array2 in main and func. Both declarations
allocate storage for arrays of ints. Both array1 and array2 refer (by pointing to the first
elements) to the storage allocated for the arrays. What memory locations they refer to
can't be changed (though the contents of these locations can be changed).

In the definition of func, arg is an argument that acts as a variable that's initialized with
whatever is passed to func. In the slide, func is called with array1 as the argument.
Thus, arg is initialized with array1, which means it's initialized with a pointer to the first
element of the array referred to by array1. But this initial value of arg is not permanent
-- we're free to change it, as we do when we assign array2 to arg.

CS33 Intro to Computer Systems II–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments
int func(int arg[]) {
 int array2[6] = {4, 5, 6, 7, 8, 9};
 arg[1] = 0;
 arg = array2;
 return arg[3];
}

int main() {
 int array1[4] = {0, 1, 2, 3};
 int x = func(array1);
 printf("%d, %d\n", x, array1[1]);
 return 0;
}

$./a.out
7 0

0
1
2
3

0
array1

arg
4
5
6
7
8
9

7x:

array2

7

The statement

++A;

is equivalent to

A = A+1;

This is known as “pre-increment”. There’s also pre-decrement:

--A;

C also has post-increment and post-decrement – we’ll cover them a few lectures from
now.

CS33 Intro to Computer Systems II–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments

void func(int arg[]) {
 /* arg points to the caller’s array */
 int local[7];
 ++arg;
 arg = local;
 ++local;
 local = arg;
}

/* seven ints */
/* legal */
/* legal */
/* illegal */
/* illegal */

CS33 Intro to Computer Systems II–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 ++(*p);
 printf("%d %p\n", *p, p);
}

$./a.out
5 134217728

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

45

134217736:
134217737:
134217738:
134217739:

13
42

17
72

8

Note that ++p is a pointer, thus it makes sense to dereference it (*(++p)). In this
example, after being incremented, the pointer points to itself.

CS33 Intro to Computer Systems II–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 *(++p);
 printf("%d %p\n", *p, p);
}

$./a.out
134217732 134217732

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4

134217736:
134217737:
134217738:
134217739:

13
42

17
72

8
13

42
17

73
2

CS33 Intro to Computer Systems II–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

int func(int arg[]) {
 ++arg;
 return arg[0];
}

int main() {
 int A[3]={10, 11, 12};
 printf("%d\n",
 func(A));
}

What’s printed?

a) 9
b) 10
c) 11
d) 12

Note how we initialize the contents of array b in func.

CS33 Intro to Computer Systems II–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

This program prints:

a) 0
b) 10
c) 11
d) nothing: it doesn’t

compile because of a
syntax error

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[50];
 array[1] = 0;
 printf("result = %d\n",
 func(array));
 return 0;
}

CS33 Intro to Computer Systems II–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

This program prints:

a) 7
b) 8
c) 10
d) 11

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[5] = {9, 8, 7, 6, 5};
 func(array);
 printf("%d\n", array[1]);
 return 0;
}

The preprocessor modifies the source code before the code is compiled. Thus,
its output is what is passed to gcc's compiler.

Note that one must include stdio.h if using printf (as well as some other
functions) in a program.

On most Unix systems (including Linux, but not OS X), the standard place for
header files is the directory /usr/include.

CS33 Intro to Computer Systems II–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Preprocessor

#include
• calls the preprocessor to include a file
What do you include?
• your own header file:
#include "fact.h"
– look in the current directory

• standard header file:
#include <assert.h>
#include <stdio.h>
– look in a standard place

Contains declaration of
printf (and other things)

It's convenient to package the declaration of functions (and other useful stuff)
in header files, such as fact.h, so the programmer need simply to include
them, rather than reproduce their contents.

The source code for the fact function would be in some other file, perhaps as
part of a library (a concept we discuss later).

CS33 Intro to Computer Systems II–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

#include "fact.h"
int main() {
 printf("%f\n", fact(5));
 return 0;
}

float fact(int i);

fact.h main.c

CS33 Intro to Computer Systems II–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define SIZE 100
int main() {
 int i;
 int a[SIZE];
}

#define
• defines a substitution
• applied to the program by the preprocessor

The #define directive can be used for pretty much anything, such as segments
of code as shown in the slide. (It's not its concern as to whether the code
segments are useful!)

CS33 Intro to Computer Systems II–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define forever for(;;)
int main() {
 int i;
 forever {
 printf("hello world\n");
 }
}

The assert statement is actually implemented as a macro (using #define). One
can “turn off” asserts by defining (using #define) NDEBUG. For example,

#include <assert.h>
...
#define NDEBUG
...
assert(i>=0);

In this case, the assert will not be executed, since NDEBUG is defined. Note
that one also can define items such as NDEBUG on the command line for gcc
using the –D flag. For example,

gcc –o prog prog.c –DNDEBUG

Has the same effect as having “#define NDEBUG” as the first line of prog.c.

CS33 Intro to Computer Systems II–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

assert

i
f

#include <assert.h>
float fact(int i) {
 int k, res;
 assert(i >= 0);
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}
int main() {
 printf("%f\n", fact(-1));
 return 0;
}

assert
• verify that the

assertion holds
• abort if not

$./fact
main.c:4: failed assertion 'i >= 0'
Abort

