CS 33

Introduction to C
Part 2

CS33 Intro to Computer Systems -1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

int main () {

printf ("%d\n", fact(5)); T
return 0; * Is just another

| function
 starts the program

mailin

int fact(int 1) {
int k; All functions

e EES) | - have a return type
for (res=1, k=1; k<=i; k++)
res = res * k;

return res;

CS33 Intro to Computer Systems -2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It

S gcc —-o fact fact.c
S ./fact
120

CS33 Intro to Computer Systems -3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

int main () {
printf ("$f\n", fact(5));
return O;
}
float fact(int 1) {
int k;
float res;
for (res=1, k=1; k<=i; k++)
res = res * k;
return res;

CS33 Intro to Computer Systems -4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definition

$ gcc -o fact fact.c

main.c:27: warning: type mismatch with previous i1mplicit
declaration

main.c:23: warning: previous 1mplicit declaration of

'fact'
main.c:27: warning: 'fact' was previously implicitly
declared to return 'int'

S ./fact
1079902208

CS33 Intro to Computer Systems -5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

float fact (int i) ; *\6;

int main() { \ ———

printf ("$f\n", fact (5)) ;|Declares the function

return 0O;
}
float fact(int 1) {

int k;

float res;

for (res=0,k=1; k<=1; k++)

res = res * k;
return res:
S ./fact

120.000000

Methods

 C has functions

 Java has methods

— methods implicitly refer to objects
— C doesn’t have objects

* Don’t use the “M” word
— it’s just wrong

CS33 Intro to Computer Systems -7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

Arguments are

} , passed by value
int main () {

int a = 4;

int b = 8;

swap (a, b);

printf ("a:%d b:3d", a, b);

CS33 Intro to Computer Systems 11-8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

int tmp;
Cie = Jg 9 = 1g 1L = LClps Darn!
}
int main() { v -/a.out
int a = 4; a:4 Db:8 O
int b = §;
swap (a, b);
printf ("a:%d b:3d", a, b);
}

CS33 Intro to Computer Systems 11-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why “pass by value”?

* Fortran, for example, passes arguments “by
reference”

« Early implementations had the following
problem (shown with C syntax):

int main () {
function (2) ;

intf ("$d\n", 2);
} P . S ./a.out

void function (int x) { 3
X = 3;

}

CS33 Intro to Computer Systems 11-10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables and Memory

What does
int x;
do?

* |t tells the compiler:

| want x to be the name of an area of memory
that’s big enough to hold an int.

What’s memory?

CS33 Intro to Computer Systems 11-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory

+ “Real” memory
— it’s complicated

— it involves electronics, semiconductors, physics,
etc.

— it’s not terribly relevant at this point

* “Virtual” memory
— the notion of memory as used by programs
— it involves logical concepts

— it’s how you should think about memory (most of
the time)

CS33 Intro to Computer Systems 11-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Virtual Memory

S Y RS

 It’s a large array of bytes
— one byte is eight bits

— an int is four consecutive bytes 134217728: |

. 134217729:

— sois a float virtual | 134217730:

— a char is one byte memory | 134217731

 The array index of a byte is its |
address

— the address of a larger item is the
index of its first byte

4294967294:
| 4294967295:

CS33 Intro to Computer Systems 11-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables

Where

— they refer to locations in memory
Size

— how much memory they refer to

Interpretation
— how to interpret the contents of memory

All determined when they are declared
None of the above change after declaration

int x; // sizeof(x) == 4
float y; // sizeof(y) == 4
char z; // sizeof(z) == 1

CS33 Intro to Computer Systems 11-14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory addresses in C

e InC

- you can get the memory
address of any variable

- just use the operator &

int main () {
int a = 4;
printf ("$p\n", &a);

S ./a.out
134217728

S Y RS

134217728:

134217729:
134217730:
134217731:

4294967294:
4294967295:

CS33 Intro to Computer Systems 11-15

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

 What is a C pointer?
— a variable that holds an address

* Pointers in C are “typed” (remember the promises)
— pointer to an int
— pointer to a char
— pointer to a float
— pointer to <whatever you can define>

* C has a syntax to declare pointer types
— things start to get complicated ...

CS33 Intro to Computer Systems 11-16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

p IS a pointer to an int

if you follow p, you find an int

int maig&}/{

p is assigned the address of a

int *p;

int a = 4;

p = &a;

printf ("%p\n", p);
}
S ./a.out
134217728

CS33 Intro to Computer Systems

-17

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

S Y RS

int main () {
[] * °
int *p; 134217728:|| ||
int a = 4: 134217729: [|l
- ' 134217730:|| " [
D = &a; 134217731:
i e) 134217732:] ||
O ("sp\n", p); 134217733:[] |
} 134217734:| g_
134217735: [|~|
134217736: |||
5 /a3.out 134217737:|| 2|
134217738:
134217728 134217739:|] ||
4294967294:
4294967295:

CS33 Intro to Computer Systems 11-18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

* Pointers are typed
—the types of the items they point to are known
—there is one exception (discussed later)

* Pointers are first-class citizens
—they can be passed to functions

—they can be stored in arrays and other data
structures

—they can be returned by functions
* Pointers have the properties of all variables

sizeof (int *) == sizeof (char *) ==

CS33 Intro to Computer Systems 11-19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

What does this do?

void swap (int *i, int *7) {
int *tmp;
tmp = j;] = 1; 1 = tmp;

J

int main () {
int a = 4;
int b = 8;

S ./a.out
a:4 Db:8

O

Damn!

swap (&a, &b);
printf ("a:%d b:%d\n", a, b);

CS33 Intro to Computer Systems 11-20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

* Dereferencing pointers
— accessing/modifying the value

pointed to by a pointer

int main() {
int *p;
int a = 4;

CS33 Intro to Computer Systems

S Y RS

134217728:

134217729:
134217730:
134217731:
134217732
134217733
134217734
134217735:
134217736:
134217737
134217738:
134217739:

1
134217728

4294967294:
4294967295:

/. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {

int *p; S ./a.out
’
4
int a = 4; 3
P = &a
printf ("%d\n", *p);
*p = *p + 1;
printf ("%d\n", a);
}
CS33 Intro to Computer Systems 11-22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

void swap (int *i, int *7) {

int tmp;

fmp = *9; *3 = *i; *i = tmp; Hooray!
}
: . S ./a.out
int main () 2.8 b4

{
int a = 4;
int b = 8;

swap (&a, &b);
printf ("a:%d b:%d\n", a, b);

CS33 Intro to Computer Systems 11-23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int doubleit (int *p) {

o= 2% (*p); What’s printed?
return *p;
} a) 8
int main () { b) 16
int a = 4; c) 32
int b; d) 64

b = doubleit (&a) ;
printf ("sd\n", a*b);

CS33 Intro to Computer Systems 11-24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

a 33
aTK] a[1] a[2] a[6]
0 \ int main() |
int al7/];
int *p;
p = &al0];
*p = 33;

CS33 Intro to Computer Systems 11-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic

Pointers can be incremented/decremented
— what this does depends on its type

33 | 167
al0 a[1] a[2] a[6]

\ int main() {
int al[7/];
int *p;
p = &a[0];
*p = 335
*(ptl) = 167;

}

CS33 Intro to Computer Systems

11-26

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic

Pointers can be incremented/decremented
— what this does depends on its type

a[o\ a[1] a[2] a[6]
P \ int main () {
int al[7]; Now p and a
int *p; / have the
p = &al[0]; same value
}

CS33 Intro to Computer Systems 1-27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic

Pointers can be incremented/decremented
— what this does depends on its type

a 33 167

a[0 a[1] a[2] a[6]
int main () {
0 \ int a[7];
Lts *V The array name
P = a5 represents a
*p = 33; pointer to its first
pl[l] = 167; element
}
CS33 Intro to Computer Systems 11-28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

p = &al[0]; can also be written as p = a;

ali]; really is

* (a+1)

 This makes sense, yet is weird ...

- pis of type int ~*
* it can be assigned to
int *g;
P = ds

- a sort of behaves like an int *
* but it can’t be assigned to in the same way

7

CS33 Intro to Computer Systems

11-29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Non-Array Variables

e 1nt 1
— four bytes of memory are allocated for 1
sizeof (1) ==

— 1 represents the contents of this memory,
interpreted as an int

— it makes sense to do, for example
i = 7; // changes the contents of i
e 1nt *p
— 8 bytes of memory are allocated for p
sizeof (p) ==

— p represents the contents of this memory,
interpreted as an int *

— it makes sense to do, for example
p = &1; // changes the contents of p

CS33 Intro to Computer Systems 11-30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Array Variables

e 1int A[OG]
— 24 bytes of memory are allocated for 2
sizeof (A) == 24

— A represents the address of the first byte
— *A is the value of the first int (as if 2 were an int *)
— it does not make sense to do
A = &i; // would change the location of A
e 1nt *p = A;
— 8 bytes of memory are allocated for p
sizeof (p) ==
— p represents the contents of this memory
— *p is the same as A [0]

— it makes sense to do, for example
p = &1;

CS33 Intro to Computer Systems 11-31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Functions

initialized with a copy
int func(int int nelements) of the argument

int i;

for (1i=0,; i<nelements; 1++) {
*(a+1) = 1i;

}

return nelements;

int main () {
int array[1000000000] = ... ;
printf ("result = %d\n", func(array, 1000000000)) ;

return O;

CS33 Intro to Computer Systems 11-32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

initialized with a copy
int func(int ts) { of the argument

int i;

for (1i=0,; i<nelements; 1++) {
ali] = 1;

}

return nelements;

int main () {
int array[1000000000] = ... ;
printf ("result = %d\n", func(array, 1000000000)) ;

return O;

CS33 Intro to Computer Systems 11-33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

ignored
int func(int'ali:D], int nelements) {

int i;

for (1i=0,; i<nelements; 1++) {
ali] = 1;
}

return nelements;

int main () {
int array[1000000000] = ... ;
printf ("result = %d\n", func(array, 1000000000)) ;

return O;

CS33 Intro to Computer Systems 11-34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parameter passing

Passing arrays to a function

int average(int al],
int 1; int sum;
for (1=0, sum=0;
sum += a[i];
return sum/size;
}
int main () {
int a[100];

}

i<size;

printf ("$d\n", average (a, 100)) ;

int size) {

i++)

CS33 Intro to Computer Systems 11-35

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two entries of an array

void swap(int a[], int 1, int j) {
int tmp;
tmp = aljl;
aljl = al1]l;
afi] = tmp;

CS33 Intro to Computer Systems 11-36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Selection Sort

void selectsort (int array[], int length) {
int i, j, min;
for (i = 0; i < length; ++1) {
/* find the index of the smallest item from i1 onward */
min = 1i;
for (J = i; 37 < length; ++73) {
if (array[j] < array[min])
min = 7j;
}
/* swap the smallest item with the i-th item */
swap (array, 1, min);
}
/* at the end of each iteration, the first 1 slots have the i
smallest items */

CS33 Intro to Computer Systems 1-37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments

int func(int argl[]) { array1 0
int array2[(6] = {4, 5, 6, 7, 8, 9}; 0
arg[l] = 0; 2
arg = arrayzl;
return arg(3]; X:| 7 3

}

arg

int main () {

array2

int arrayl[4] = {0, 1, 2, 3};

int x = func(arrayl);

printf ("%d, %d\n", x, arrayl[1l]);
return O;

OO N O~

S ./a.out
7 0

CS33 Intro to Computer Systems 11-38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments

void func (int argl[])

int locall[7];
++arg;

arg = local;
++1local;
local = arg;

{

/*
/*
/*
/*
/*

/* arg points to the caller’s array */

seven ints */
legal */
legal */
illegal */
illegal */

CS33 Intro to Computer Systems 11-39

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

S Y RS

int main () {
int *p; int a = 4; |
134217728: [|
P = &a; 134217729:[] ||
L (%) - 134217730: [|
f P); 134217731:
printf ("%d %p\n", *p, p); 134217732:|] ||
\ 134217733:|] |
134217734: || = [
134217735: || |
134217736: |3 |
134217737: [|
134217738:[] |
S ./a.out 134217739:
5 134217728 :
4294967294:
4294967295

CS33 Intro to Computer Systems 11-40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

S Y RS

int main () {
int *p; int a = 4; |
134217728:[] |
p = &a; 134217729: | |
X (440 - 134217730: (] |
(. p) 134217731
printf ("%d %p\n", *p, p):; 134217732:(] |
\ 134217733:|] ||
134217734: || o [
134217735: || K [
134217736: [|5 |
134217737: || < |
134217738:|] ||
S ./a.out 134217739:[] ||
134217732 134217732 s
4294967294:
4294967295:

CS33 Intro to Computer Systems 11-41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

int func(int argl[]) What'’s printed?
++arg;
return arg([0]; a) 9
} b) 10
c) 11
int main() { d) 12
int A[3]={10, 11, 12};
printf ("%$d\n",
func (A)) ;

CS33 Intro to Computer Systems 11-42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz

3

int func (int al[]) {

int b[5] = {10, 11, 12, 13, 14};
a = b; This program prints:
return al[l];
J a) 0
b) 10
int main () { C) 11
int array[50]; . . ,
B d) nothing: it doesn’t
array[1l] = 0; .
printf ("result = 3d\n", compile because of a
func (array)); syntax error
return O;
}
CS33 Intro to Computer Systems 11-43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz

4

int func(int af[]) {

int b[5] = {10, 11, 12, 13, 14};

a = b; . i

return af[l]; This program prints:
}

a) 7

int main () { b) 8

int array[5] = {9, 8, 7, 6, 5}; c) 10

func (array) ; d) 11

printf ("%d\n", array[l]);

return O;
}

CS33 Intro to Computer Systems 11-44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Preprocessor

#include
» calls the preprocessor to include a file
What do you include?

* your own header file:
#include "fact.h"

—look in the current directory
» standard header file:

#include <assert.h> Contains declaration of
#include <stdio.h> printf (and other things)

—look in a standard place

CS33 Intro to Computer Systems 11-45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

fact.h

main.c

float fact (int 1);

#include "fact.h"

int main() {
printf ("$f\n", fact(5));
return O;

CS33 Intro to Computer Systems

11-46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define SIZE 100
int main () {

int 1i;

int a[SIZE];

J

#define
« defines a substitution
- applied to the program by the preprocessor

CS33 Intro to Computer Systems 1-47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#tdefine forever for(;;)
int main () {
int 1;
forever {
printf ("hello world\n");

CS33 Intro to Computer Systems 11-48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

assert

#include <assert.h>
float fact(int 1) {
int k, res;
assert (1 >= 0);
for (res=1,k=1; k<=1i,; k++)
res = res * k;
return res;

}

assert

 verify that the
assertion holds

 abort if not

int main () {
printf ("$f\n", fact(-1));
S ./fact

main.c:4: failed assertion '1
Abort

>= 0

