
CS33 Intro to Computer Systems II–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 2

CS33 Intro to Computer Systems II–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%d\n", fact(5));
 return 0;
}

int fact(int i) {
 int k;
 int res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

main
• is just another

function
• starts the program

All functions
• have a return type

CS33 Intro to Computer Systems II–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It

$ gcc –o fact fact.c
$./fact
120

CS33 Intro to Computer Systems II–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

CS33 Intro to Computer Systems II–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Definitions

$ gcc –o fact fact.c
main.c:27: warning: type mismatch with previous implicit
declaration
main.c:23: warning: previous implicit declaration of
'fact'
main.c:27: warning: 'fact' was previously implicitly
declared to return 'int'

$./fact
1079902208

CS33 Intro to Computer Systems II–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

i
f

float fact(int i);

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=0,k=1; k<=i; k++)
 res = res * k;
 return res;
}

Declares the function

$./fact
120.000000

CS33 Intro to Computer Systems II–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Methods

• C has functions
• Java has methods

– methods implicitly refer to objects
– C doesn’t have objects

• Don’t use the “M” word
– itʼs just wrong

?

CS33 Intro to Computer Systems II–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

Arguments are
passed by value

CS33 Intro to Computer Systems II–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {
 int tmp;
 tmp = j; j = i; i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

$./a.out
a:4 b:8

Darn!

CS33 Intro to Computer Systems II–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why “pass by value”?

• Fortran, for example, passes arguments “by
reference”

• Early implementations had the following
problem (shown with C syntax):

int main() {
 function(2);
 printf("%d\n", 2);
}
void function(int x) {
 x = 3;
}

$./a.out
3

CS33 Intro to Computer Systems II–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables and Memory

What does
int x;

do?

• It tells the compiler:
I want x to be the name of an area of memory
that’s big enough to hold an int.

What’s memory?

CS33 Intro to Computer Systems II–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory

• “Real” memory
– it’s complicated
– it involves electronics, semiconductors, physics,

etc.
– it’s not terribly relevant at this point

• “Virtual” memory
– the notion of memory as used by programs
– it involves logical concepts
– it’s how you should think about memory (most of

the time)

CS33 Intro to Computer Systems II–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Virtual Memory

• It’s a large array of bytes
– one byte is eight bits
– an int is four consecutive bytes
– so is a float
– a char is one byte

• The array index of a byte is its
address
– the address of a larger item is the

index of its first byte

virtual
memory

x

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

CS33 Intro to Computer Systems II–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Variables
• Where

– they refer to locations in memory
• Size

– how much memory they refer to
• Interpretation

– how to interpret the contents of memory

• All determined when they are declared
• None of the above change after declaration

int x; // sizeof(x) == 4
float y; // sizeof(y) == 4
char z; // sizeof(z) == 1

CS33 Intro to Computer Systems II–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

int main() {
 int a = 4;
 printf("%p\n", &a);
}

$./a.out
134217728

Memory addresses in C

• In C
- you can get the memory

address of any variable
- just use the operator &

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a4

CS33 Intro to Computer Systems II–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• What is a C pointer?
– a variable that holds an address

• Pointers in C are “typed” (remember the promises)
– pointer to an int
– pointer to a char
– pointer to a float
– pointer to <whatever you can define>

• C has a syntax to declare pointer types
– things start to get complicated …

CS33 Intro to Computer Systems II–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%p\n", p);
}

$./a.out
134217728

p is a pointer to an int

p is assigned the address of a

if you follow p, you find an int

CS33 Intro to Computer Systems II–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%p\n", p);
}

$./a.out
134217728

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

CS33 Intro to Computer Systems II–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• Pointers are typed
– the types of the items they point to are known
– there is one exception (discussed later)

• Pointers are first-class citizens
– they can be passed to functions
– they can be stored in arrays and other data

structures
– they can be returned by functions

• Pointers have the properties of all variables
sizeof(int *) == sizeof(char *) == 8

CS33 Intro to Computer Systems II–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

What does this do?

void swap(int *i, int *j) {
 int *tmp;
 tmp = j; j = i; i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(&a, &b);
 printf("a:%d b:%d\n", a, b);
}

$./a.out
a:4 b:8

Damn!

CS33 Intro to Computer Systems II–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Pointers

• Dereferencing pointers
– accessing/modifying the value

pointed to by a pointer

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%d\n", *p);
 *p = *p + 1;
 printf("%d\n", *p);
} $./a.out

4
5

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4 5

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

CS33 Intro to Computer Systems II–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p;
 int a = 4;
 p = &a;
 printf("%d\n", *p);
 *p = *p + 1;
 *p += 3;
 printf("%d\n", a);
}

$./a.out
4
8

CS33 Intro to Computer Systems II–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

void swap(int *i, int *j) {
 int tmp;
 tmp = *j; *j = *i; *i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(&a, &b);
 printf("a:%d b:%d\n", a, b);
}

$./a.out
a:8 b:4

Hooray!

CS33 Intro to Computer Systems II–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int doubleit(int *p) {
 p = 2(*p);
 return *p;
}
int main() {
 int a = 4;
 int b;
 b = doubleit(&a);
 printf("%d\n", a*b);
}

What’s printed?

a) 8
b) 16
c) 32
d) 64

CS33 Intro to Computer Systems II–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

a

a[0] a[1] a[2] a[6]

p

33

int main() {
 int a[7];
 int *p;
 p = &a[0];
 *p = 33;
}

CS33 Intro to Computer Systems II–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

33 167

p

a

int main() {
 int a[7];
 int *p;
 p = &a[0];
 *p = 33;
 *(p+1) = 167;
}

CS33 Intro to Computer Systems II–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

p

a

Now p and a
have the
same value

int main() {
 int a[7];
 int *p;
 p = &a[0];
}

CS33 Intro to Computer Systems II–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointer Arithmetic
Pointers can be incremented/decremented

– what this does depends on its type

a[0] a[1] a[2] a[6]

33 167

p

a

int main() {
 int a[7];
 int *p;
 p = a;
 *p = 33;
 p[1] = 167;
}

The array name
represents a
pointer to its first
element

CS33 Intro to Computer Systems II–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

can also be written as p = &a[0]; p = a;

a[i]; really is *(a+i)

• This makes sense, yet is weird ...
- p is of type int *

• it can be assigned to
int *q;
p = q;

- a sort of behaves like an int *
• but it can’t be assigned to in the same way

a = q;

CS33 Intro to Computer Systems II–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Non-Array Variables
• int i

– four bytes of memory are allocated for i
sizeof(i) == 4

– i represents the contents of this memory,
interpreted as an int

– it makes sense to do, for example
i = 7; // changes the contents of i

• int *p
– 8 bytes of memory are allocated for p

sizeof(p) == 8

– p represents the contents of this memory,
interpreted as an int *

– it makes sense to do, for example
p = &i; // changes the contents of p

CS33 Intro to Computer Systems II–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Array Variables
• int A[6]

– 24 bytes of memory are allocated for A
sizeof(A) == 24

– A represents the address of the first byte
– *A is the value of the first int (as if A were an int *)
– it does not make sense to do

A = &i; // would change the location of A

• int *p = A;
– 8 bytes of memory are allocated for p

sizeof(p) == 8

– p represents the contents of this memory
– *p is the same as A[0]
– it makes sense to do, for example

p = &i;

CS33 Intro to Computer Systems II–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Functions

int func(int *a, int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 *(a+i) = i;

 }

 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));

 return 0;
}

initialized with a copy
of the argument

CS33 Intro to Computer Systems II–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

int func(int a[], int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 a[i] = i;

 }

 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));

 return 0;
}

initialized with a copy
of the argument

CS33 Intro to Computer Systems II–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Equivalently

int func(int a[500], int nelements) {
 int i;
 for (i=0; i<nelements; i++) {
 a[i] = i;

 }

 return nelements;
}

int main() {
 int array[1000000000] = ... ;
 printf("result = %d\n", func(array, 1000000000));

 return 0;
}

ignored

CS33 Intro to Computer Systems II–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parameter passing
Passing arrays to a function

int average(int a[], int size) {
 int i; int sum;
 for(i=0,sum=0; i<size; i++)
 sum += a[i];
 return sum/size;
}
int main() {
 int a[100];
 …
 printf("%d\n",average(a,100));
}

CS33 Intro to Computer Systems II–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two entries of an array

void swap(int a[], int i, int j) {
 int tmp;
 tmp = a[j];
 a[j] = a[i];
 a[i] = tmp;
}

CS33 Intro to Computer Systems II–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Selection Sort

void selectsort(int array[], int length){
 int i, j, min;
 for (i = 0; i < length; ++i){
 /* find the index of the smallest item from i onward */
 min = i;
 for (j = i; j < length; ++j) {
 if (array[j] < array[min])
 min = j;
 }
 /* swap the smallest item with the i-th item */
 swap(array, i, min);
 }
 /* at the end of each iteration, the first i slots have the i
 smallest items */
}

CS33 Intro to Computer Systems II–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments
int func(int arg[]) {
 int array2[6] = {4, 5, 6, 7, 8, 9};
 arg[1] = 0;
 arg = array2;
 return arg[3];
}

int main() {
 int array1[4] = {0, 1, 2, 3};
 int x = func(array1);
 printf("%d, %d\n", x, array1[1]);
 return 0;
}

$./a.out
7 0

0
1
2
3

0
array1

arg
4
5
6
7
8
9

7x:

array2

7

CS33 Intro to Computer Systems II–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments

void func(int arg[]) {
 /* arg points to the caller’s array */
 int local[7];
 ++arg;
 arg = local;
 ++local;
 local = arg;
}

/* seven ints */
/* legal */
/* legal */
/* illegal */
/* illegal */

CS33 Intro to Computer Systems II–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 ++(*p);
 printf("%d %p\n", *p, p);
}

$./a.out
5 134217728

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

45

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

CS33 Intro to Computer Systems II–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 *(++p);
 printf("%d %p\n", *p, p);
}

$./a.out
134217732 134217732

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4

134217736:
134217737:
134217738:
134217739:

13
42
17
72
8

13
42
17
73
2

CS33 Intro to Computer Systems II–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

int func(int arg[]) {
 ++arg;
 return arg[0];
}

int main() {
 int A[3]={10, 11, 12};
 printf("%d\n",
 func(A));
}

What’s printed?

a) 9
b) 10
c) 11
d) 12

CS33 Intro to Computer Systems II–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

This program prints:

a) 0
b) 10
c) 11
d) nothing: it doesn’t

compile because of a
syntax error

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[50];
 array[1] = 0;
 printf("result = %d\n",
 func(array));
 return 0;
}

CS33 Intro to Computer Systems II–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

This program prints:

a) 7
b) 8
c) 10
d) 11

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[5] = {9, 8, 7, 6, 5};
 func(array);
 printf("%d\n", array[1]);
 return 0;
}

CS33 Intro to Computer Systems II–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Preprocessor

#include

• calls the preprocessor to include a file
What do you include?
• your own header file:
#include "fact.h"
– look in the current directory

• standard header file:
#include <assert.h>
#include <stdio.h>
– look in a standard place

Contains declaration of
printf (and other things)

CS33 Intro to Computer Systems II–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

#include "fact.h"
int main() {
 printf("%f\n", fact(5));
 return 0;
}

float fact(int i);

fact.h main.c

CS33 Intro to Computer Systems II–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define SIZE 100
int main() {
 int i;
 int a[SIZE];
}

#define

• defines a substitution
• applied to the program by the preprocessor

CS33 Intro to Computer Systems II–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define forever for(;;)
int main() {
 int i;
 forever {
 printf("hello world\n");
 }
}

CS33 Intro to Computer Systems II–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

assert

i
f

#include <assert.h>
float fact(int i) {
 int k, res;
 assert(i >= 0);
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}
int main() {
 printf("%f\n", fact(-1));
 return 0;
}

assert
• verify that the

assertion holds
• abort if not

$./fact
main.c:4: failed assertion 'i >= 0'
Abort

