
Some of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems III–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 3

In this example, we've declared array1 and array2 in main and func. Both declarations
allocate storage for arrays of ints. Both array1 and array2 refer (by pointing to the first
elements) to the storage allocated for the arrays. What memory locations they refer to
can't be changed (though the contents of these locations can be changed).

In the definition of func, arg is an argument that acts as a variable that's initialized with
whatever is passed to func. In the slide, func is called with array1 as the argument.
Thus, arg is initialized with array1, which means it's initialized with a pointer to the first
element of the array referred to by array1. But this initial value of arg is not permanent
-- we're free to change it, as we do when we assign array2 to arg.

CS33 Intro to Computer Systems III–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments
int func(int arg[]) {
 int array2[6] = {4, 5, 6, 7, 8, 9};
 arg[1] = 0;
 arg = array2;
 return arg[3];
}

int main() {
 int array1[4] = {0, 1, 2, 3};
 int x = func(array1);
 printf("%d, %d\n", x, array1[1]);
 return 0;
}

$./a.out
7 0

0
1
2
3

0
array1

arg
4
5
6
7
8
9

7x:

array2

7

CS33 Intro to Computer Systems III–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays and Arguments

void func(int arg[]) {
 /* arg points to the caller’s array */
 int local[7];
 arg++;
 arg = local;
 local++;
 local = arg;
}

/* seven ints */
/* legal */
/* legal */
/* illegal */
/* illegal */

CS33 Intro to Computer Systems III–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 (*p)++;
 printf("%d %p\n", *p, p);
}

$./a.out
5 134217728

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

45

134217736:
134217737:
134217738:
134217739:

13
42

17
72

8

Operator precedence is hard to remember! ("++" takes precedence over "*".)

Note that even though *p is an int, but it’s printed as an 8-byte pointer, what’s
printed is its value as an int. Exactly why this is so (and why it could be a
problem) is something we’ll discuss in a week or two.

CS33 Intro to Computer Systems III–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 *p++;
 printf("%d %p\n", *p, p);
}

$./a.out
134217732 134217732

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

a

134217732:
134217733:
134217734:
134217735: p

4

134217736:
134217737:
134217738:
134217739:

13
42

17
72

8
13

42
17

73
2

Here it's clear that the * operator is applied before the ++ operator.

CS33 Intro to Computer Systems III–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dereferencing C Pointers

int main() {
 int *p; int a = 4;
 p = &a;
 ++*p;
 printf("%d %p\n", *p, p);
}

$./a.out
5 134217728

CS33 Intro to Computer Systems III–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int func(int arg[]) {
 arg++;
 return arg[0];
}

int main() {
 int A[3]={10, 11, 12};
 printf("%d\n",
 func(A));
}

What’s printed?

a) 9
b) 10
c) 11
d) 12

Note how we initialize the contents of array b in func.

CS33 Intro to Computer Systems III–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

This program prints:

a) 0
b) 10
c) 11
d) nothing: it doesn’t

compile because of a
syntax error

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[50];
 array[1] = 0;
 printf("result = %d\n",
 func(array));
 return 0;
}

CS33 Intro to Computer Systems III–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

This program prints:

a) 7
b) 8
c) 10
d) 11

int func(int a[]) {
 int b[5] = {10, 11, 12, 13, 14};
 a = b;
 return a[1];
}

int main() {
 int array[5] = {9, 8, 7, 6, 5};
 func(array);
 printf("%d\n", array[1]);
 return 0;
}

The preprocessor modifies the source code before the code is compiled. Thus,
its output is what is passed to gcc's compiler.

Note that one must include stdio.h if using printf (as well as some other
functions) in a program.

On most Unix systems (including Linux, but not OS X), the standard place for
header files is the directory /usr/include.

CS33 Intro to Computer Systems III–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Preprocessor

#include
• calls the preprocessor to include a file
What do you include?
• your own header file:
#include "fact.h"
– look in the current directory

• standard header file:
#include <assert.h>
#include <stdio.h>
– look in a standard place

Contains declaration of
printf (and other things)

It's convenient to package the declaration of functions (and other useful stuff)
in header files, such as fact.h, so the programmer need simply to include
them, rather than reproduce their contents.

The source code for the fact function would be in some other file, perhaps as
part of a library (a concept we discuss later).

CS33 Intro to Computer Systems III–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Declarations

#include "fact.h"
int main() {
 printf("%f\n", fact(5));
 return 0;
}

float fact(int i);

fact.h main.c

CS33 Intro to Computer Systems III–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define SIZE 100
int main() {
 int i;
 int a[SIZE];
}

#define
• defines a substitution
• applied to the program by the preprocessor

The #define directive can be used for pretty much anything, such as segments
of code as shown in the slide. (It's not its concern as to whether the code
segments are useful!)

CS33 Intro to Computer Systems III–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define

#define forever for(;;)
int main() {
 int i;
 forever {
 printf("hello world\n");
 }
}

The assert statement is actually implemented as a macro (using #define). One
can “turn off” asserts by defining (using #define) NDEBUG. For example,

#include <assert.h>
...
#define NDEBUG
...
assert(i>=0);

In this case, the assert will not be executed, since NDEBUG is defined. Note
that one also can define items such as NDEBUG on the command line for gcc
using the –D flag. For example,

gcc –o prog prog.c –DNDEBUG

Has the same effect as having “#define NDEBUG” as the first line of prog.c.

CS33 Intro to Computer Systems III–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

assert

i
f

#include <assert.h>
float fact(int i) {
 int k, res;
 assert(i >= 0);
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}
int main() {
 printf("%f\n", fact(-1));
 return 0;
}

assert
• verify that the

assertion holds
• abort if not

$./fact
main.c:4: failed assertion 'i >= 0'
Abort

Note that ‘\0’ is represented as a byte containing all zeroes.

A single character (such as '\0') is enclosed in single quotes and, of course, is
just that character. A string of characters (such as "hello") ends with a null
character and is enclosed with with double quotes). Its value is the pointer to
the string of characters.

CS33 Intro to Computer Systems III–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Strings

• Strings are arrays of characters terminated by
'\0' (null character)
– the '\0' is included at the end of string constants

» "Hello"

H e l l o \0

We use the %s format code to print a string. The “string” is actually the pointer
to an array of characters (ending with a ‘\0’), and thus the %s format code
expects a pointer.,

Since we didn’t explicitly output a newline character, the prompt for the next
command goes on the same line as the string that was printed.

CS33 Intro to Computer Systems III–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Strings

int main() {
 printf("%s","Hello");
 return 0;
}

$./a.out
Hello$

We’ve added the newline character to the format specifier of printf – the
prompt now appears on the next line. Note that we could get the same effect by
putting the newline character at the end of the string, rather than in the
format specifier.

CS33 Intro to Computer Systems III–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Strings

int main() {
 printf("%s\n","Hello");
 return 0;
}

$./a.out
Hello
$

We can also print a single character at a time. Note the test for the null
character, which determines whether we’ve reached the end of the string.

CS33 Intro to Computer Systems III–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Strings

void printString(char s[]) {
 int i;
 for(i=0; s[i]!='\0'; i++)
 printf("%c", s[i]);
}
int main() {
 printString("Hello");
 printf("\n");
 return 0;
}

Tells C that this function does not return a value

To declare something, say n, to be of type "T[6]", we must put the identifier between the
element type and the size: T n[6].

CS33 Intro to Computer Systems III–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

1-D Arrays

• If T is a datatype (such as int), then
 T n[6]

declares n to be an array of six Tʼs
⁃ the type of each element goes before the

identifier
⁃ the number of elements goes after the

identifier
• What is nʼs type?

T[6]

Even though we might think of “int [6]” as being a datatype, to declare “n” to be of that
type, we must write “int n[6]” — the size of the array goes just after the identifier, the
type of each array element goes just before the identifier.

CS33 Intro to Computer Systems III–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2-D Arrays

• Suppose T is a datatype (such as int)
• T n[6]

– declares n to be an array of (six) T
– the type of n is T[6]

• Thus T[6] is effectively a datatype
• Thus we can have an array of T[6]
• T m[7][6]

– m is an array of (seven) T[6]
– m[i] is of type T[6]
– m[i][j] is of type T

At the top we have k, which is of type T. Next, we have m, which is effectively of type
T[6], but is an array of 6 T. Finally, we have n, which we may consider to be an array of
seven T[6], or a 2-D array (7x6) of T. Each row of n is a 1-D array. Note that the address
associated with the variable n is the address of n[0][0].

CS33 Intro to Computer Systems III–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example
T k:

T m[6]:

T n[7][6]:

CS33 Intro to Computer Systems III–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

3-D Arrays

• How do we declare an array of eight T[7][6]?
T p[8][7][6]
– p is an array of (eight) T[7][6]
– p[i] is of type T[7][6]
– p[i][j] is of type T[6]
– p[i][j][k] is of type T

CS33 Intro to Computer Systems III–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

T m[8][7][6]:

Here we initialize a 2D array, then call a function (described in the next slide)
to print it.

CS33 Intro to Computer Systems III–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2-D Arrays

#define NUM_ROWS 3
#define NUM_COLS 4
…
int main() {
 int row, col;
 int m[NUM_ROWS][NUM_COLS];
 for(row=0; row<NUM_ROWS; row++)
 for(col=0; col<NUM_COLS; col++)
 m[row][col] = row*NUM_COLS+col;
 printMatrix(NUM_ROWS, NUM_COLS, m);
 return 0;
}

$./a.out
 0 1 2 3
 4 5 6 7
 8 9 10 11

We print the array by rows.

Note that the parameter m is dimensioned by the previous parameters nr and
nc. It's important that nr and nc appear in the parameter list before m.

CS33 Intro to Computer Systems III–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2-D Arrays

void printMatrix(int nr, int nc,
 int m[nr][nc]) {
 int row, col;
 for(row=0; row<nr; row++) {
 for(col=0; col<nc; col++)
 printf("%6d", m[row][col]);
 printf("\n");
 }
}

It must be told the
dimensions

C arrays are stored in row-major order, as shown in the slide. The idea is that the left
index references the row, the right index references the column. Thus, C arrays are
stored row-by-row. Thus, to index into a 2D array, we need to know how large each row
is (i.e., how many columns there are). But it’s not necessary, for indexing purposes, to
know how many rows there are.

CS33 Intro to Computer Systems III–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Layout

m[0][0]
m[0][1]
m[0][2]
m[1][0]
m[1][1]
m[1][2]
m[2][0]
m[2][1]
m[2][2]

#define NUM_ROWS 3
#define NUM_COLS 3 row 0

row 1

row 2

Row-Major Order

As we mentioned for 1-D arrays, when an array is passed to a function, what
is passed is a pointer to its first element. For a 1-D array, say an array of ints,
that first element is an int. For a 2-D array, the first element is a 1-D array,
since a 2-D array is an array of 1-D arrays. Thus, what's passed to
printMatrix in the slide is a pointer to the first row of the matrix, which is a 1-
D array of ints. (And that 1-D array is passed as a pointer to its first element.)

CS33 Intro to Computer Systems III–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2-D Arrays

void printMatrix(int nr, int nc,
 int m[][nc]) {
 int row, col;
 for(row=0; row<nr; row++) {
 for(col=0; col<nc; col++)
 printf("%6d", m[row][col]);
 printf("\n");
}

Alternatively …

Note that m is an array of arrays (in particular, an array of 1-D arrays).

CS33 Intro to Computer Systems III–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2-D Arrays
void printMatrix(int nr, int nc,
 int m[][nc]) {
 int i;
 for(i=0; i<nr; i++)
 printRow(nc, m[i]);
}

void printRow(int nc, int a[]) {
 int i;
 for(i=0; i<nc; i++)
 printf("%6d", a[i]);
 printf("\n");
}

Or …

While it’s convenient to think of something as being a 2D array, its elements are stored
linearly in memory. Thus, as shown in the slide where we are calling AccessAs1D to get
the value of A2D[1][2], given a pointer to a 2D array, we can access its elements as if it
were a 1D array.

CS33 Intro to Computer Systems III–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2D as 1D
0 1 2 3
4 5 6 7

int A2D[2][4];

0 1 2 3 4 5 6 7=

int A1D[8];

int AccessAs1D(int A[], int Row, int Col, int RowSize) {
return A[Row*RowSize + Col];

}

int main(void) {
int A2D[2][4] = {{0, 1, 2, 3}, {4, 5, 6, 7}};

 int *A1D = &A2D[0][0];
int x = AccessAs1D(A1D, 1, 2, 4);
printf("%d\n", x);
return 0;

}

$./a.out
6
$

CS33 Intro to Computer Systems III–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

Consider the array
int A[3][3];

– which element is adjacent to A[2][2] in memory?
a)A[3][3]
b)A[1][2]
c)A[2][1]
d) none of the above

CS33 Intro to Computer Systems III–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 5

Consider the array
int A[4][4];
int *B = &A[0][0];

B[8] = 8;

− which element of A was modified?
a)A[3][2]
b)A[2][0]
c)A[2][3]
d) none of the above

CS33 Intro to Computer Systems III–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Number Representation

• Hindu-Arabic numerals
– developed by Hindus starting in 5th century

» positional notation
» symbol for 0

– adopted and modified somewhat later by Arabs
» known by them as “Rakam Al-Hind” (Hindu numeral

system)
– 1999 rather than MCMXCIX

» (try doing long division with Roman numerals!)

Base 2 is known as “binary” notation.

Base 8 is known as “octal” notation.

Base 10 is known as “decimal” notation.

Base 16 is known as “hexadecimal” notation. Note that “hexa” is derived from the Greek
language and “decimal” is derived from the Latin language. Many people feel you
shouldn’t mix languages when you invent words, but IBM, who coined the term
“hexadecimal” in the 1960s, didn’t think their corporate image could withstand
“sexadecimal”.

CS33 Intro to Computer Systems III–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Base?

• 1999
– base 10

» 9∙100+9∙101+9∙102+1∙103

– base 2
» 11111001111

• 1∙20+1∙21+1∙22+1∙23+0∙24+0∙25+1∙26+1∙27+1∙28+1∙29+1∙210

– base 8
» 3717

• 7∙80+1∙81+7∙82+3∙83

» why are we interested?
– base 16

» 7CF
• 15∙160+12∙161+7∙162

» why are we interested?

Note that a byte consists of two hexadecimal digits, which are sometimes known as
“nibbles”. A 32-bit computer word would then have eight nibbles; a 64-bit computer
word would have sixteen nibbles.

Note that for the moment we consider only unsigned integers: i.e., integers whose values
are nonnegative. (We explain signed integers in a week or two.)

CS33 Intro to Computer Systems III–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Words …

0 1 1 1 1 1 0 0 1 1 1 1 12-bit computer
word

3 7 1 7

0 0 0 0 0 1 1 1 1 1 0 0 16-bit computer
word1 1 1 1

0 7 C F

This function prints the base base representation of num. The “%” operator yields the
remainder. E.g., “10%3” evaluates to 1: the remainder after dividing 10 by 3. (Note that
the “…” is not heretofore unexplained C syntax, but is shorthand for “fill this in to the
extent needed.”)

CS33 Intro to Computer Systems III–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Algorithm …
void baseX(unsigned int num, unsigned int base) {
 char digits[] = {'0', '1', '2', '3', '4', '5', '6', … };
 char buf[8*sizeof(unsigned int)+1];
 int i;

 for (i = sizeof(buf) - 2; i >= 0; i--) {
 buf[i] = digits[num%base];
 num /= base;
 if (num == 0)
 break;
 }

 buf[sizeof(buf) - 1] = '\0';
 printf("%s\n", &buf[i]);
}

“bc” (it stands for basic calculator, or perhaps better calculator) is a standard Unix
command that handles arbitrary-precision arithmetic. Among its features is the ability to
specify which base to use for input and output of numbers. The default base for both
input and output is ten. Setting obase to 16 sets the base for output to 16. Similarly,
one can change the base for input numbers by setting ibase. Note that names of digits
beyond 9 are upper-case letters (to avoid syntax issues when using variables, which are
constrained to using lower-case letters).

CS33 Intro to Computer Systems III–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Or …

$ bc

obase=16
1999
7CF
$

CS33 Intro to Computer Systems III–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 6

• What’s the decimal (base 10) equivalent of
2516?
a) 19
b) 35
c) 37
d) 38

Supplied by CMU.

Note that C also supports numbers written in octal (base-8) notation. They are written
with a leading 0. Thus 016 is the same as 14, which is the same as 0xe.

CS33 Intro to Computer Systems III–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Encoding Byte Values

• Byte = 8 bits
– binary 000000002 to 111111112
– decimal: 010 to 25510
– hexadecimal 0016 to FF16
» base 16 number representation
» use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
» write FA1D37B16 in C as

• 0xFA1D37B
• 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Deci
mal

Binary

If a computer word is to be interpreted as an unsigned integer, we can do so as shown in
the slide for 32-bit integers. Thus integers are represented in binary (base-2) notation in
the computer. We'll discuss representing negative integers in an upcoming lecture.

CS33 Intro to Computer Systems III–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unsigned 32-Bit Integers

value =

(we ignore negative integers for now)

b31 b30 b29 … b2 b1 b0

!
𝒊"𝟎

𝟑𝟏

𝒃𝒊 # 𝟐𝒊

Here n is an unsigned int whose value is 57 (expressed in base 10). As we've seen, it's
represented in the computer in binary. When we print its value using printf, we choose
to view it in the base specified by the format code. %b means binary, %u means decimal
(assuming an unsigned int), and %x means hexadecimal.

Note, in the arguments for printf, that the format string is in two parts. C allows you to
do this: "string 1 " "string 2" is treated the same as "string1 string2".

CS33 Intro to Computer Systems III–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Storing and Viewing Ints

int main() {
 unsigned int n = 57;
 printf("binary: %b, decimal: %u, "
 "hex: %x\n", n, n, n);
 return 0;
}

$./a.out
binary: 111001, decimal: 57, hex: 39
$

Supplied by CMU.

CS33 Intro to Computer Systems III–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Boolean Algebra
• Developed by George Boole in 19th Century
– algebraic representation of logic
» encode “true” as 1 and “false” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

Supplied by CMU.

CS33 Intro to Computer Systems III–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Boolean Algebras

• Operate on bit vectors
– operations applied bitwise

• All of the properties of boolean algebra apply

01101001
& 01010101

01101001
| 01010101

01101001
^ 01010101

~ 01010101
 01000001 01111101 00111100 10101010

Supplied by CMU.

CS33 Intro to Computer Systems III–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Representing &
Manipulating Sets

• Representation
– width-w bit vector represents subsets of {0, …, w–1}
– aj = 1 iff j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

• Operations
& intersection 01000001 { 0, 6 }
| union 01111101 { 0, 2, 3, 4, 5, 6 }
^ symmetric difference 00111100 { 2, 3, 4, 5 }
~ complement 10101010 { 1, 3, 5, 7 }

Supplied by CMU.

CS33 Intro to Computer Systems III–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Bit-Level Operations in C

• Operations &, |, ~, ^ available in C
– apply to any “integral” data type

» long, int, short, char
– view arguments as bit vectors
– arguments applied bit-wise

• Examples (char datatype)
~0x41 ® 0xBE

~010000012 ® 101111102
~0x00 ® 0xFF

~000000002 ® 111111112
0x69 & 0x55 ® 0x41

011010012 & 010101012 ® 010000012
0x69 | 0x55 ® 0x7D

011010012 | 010101012 ® 011111012

Supplied by CMU.

In the last example, there's no need to evaluate the complicated expression following p if
p is false, since we know the final result will be false.

CS33 Intro to Computer Systems III–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Contrast: Logic Operations in C

• Contrast to Logical Operators
– &&, ||, !
» view 0 as “false”
» anything nonzero as “true”
» always return 0 or 1
» early termination/short-circuited execution

• Examples (char datatype)
!0x41 ® 0x00
!0x00 ® 0x01
!!0x41 ® 0x01

0x69 && 0x55 ® 0x01
0x69 || 0x55 ® 0x01
p && (x || y) && ((x & z) | (y & z))

Supplied by CMU.

CS33 Intro to Computer Systems III–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Contrast: Logic Operations in C

• Contrast to Logical Operators
– &&, ||, !
» view 0 as “false”
» anything nonzero as “true”
» always return 0 or 1
» early termination/short-circuited execution

• Examples (char datatype)
!0x41 ® 0x00
!0x00 ® 0x01
!!0x41 ® 0x01

0x69 && 0x55 ® 0x01
0x69 || 0x55 ® 0x01
p && (x || y) && ((x & z) | (y & z))

Watch out for && vs. & (and || vs. |)…
One of the more common oopsies in
C programming

Recall that a char is an 8-bit integer.

CS33 Intro to Computer Systems III–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 7

• Which of the following would determine
whether the next-to-the-rightmost bit of Y
(declared as a char) is 1? (I.e., the expression
evaluates to true if and only if that bit of Y is 1.)
a) Y & 0x02
b) !((~Y) & 0x02)
c) none of the above
d) both a and b

Supplied by CMU.

Why we need both logical and arithmetic shifts should be clear by the end of an
upcoming lecture. If one is applying a right shift to an int, it is an arithmetic right shift.
Why this is so will be explained in the upcoming lecture (it has to do with the
representation of negative numbers). Though we haven't yet explained the datatype
"unsigned int" (which we will soon), when a right shift is applied to an unsigned int, it is
a logical shift.

CS33 Intro to Computer Systems III–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shift Operations

• Left Shift: x << y
– shift bit-vector x left y positions

• throw away extra bits on left
» fill with 0’s on right

• Right Shift: x >> y
– shift bit-vector x right y positions
» throw away extra bits on right

– logical shift
» fill with 0’s on left

– arithmetic shift
» replicate most significant bit on left

• Undefined Behavior
– shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

