
CS33 Intro to Computer Systems IV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 4

CS33 Intro to Computer Systems IV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Number Representation

• Hindu-Arabic numerals
– developed by Hindus starting in 5th century

» positional notation
» symbol for 0

– adopted and modified somewhat later by Arabs
» known by them as “Rakam Al-Hind” (Hindu numeral

system)
– 1999 rather than MCMXCIX

» (try doing long division with Roman numerals!)

Base 2 is known as “binary” notation.

Base 8 is known as “octal” notation.

Base 10 is known as “decimal” notation.

Base 16 is known as “hexadecimal” notation. Note that “hexa” is derived from the Greek
language and “decimal” is derived from the Latin language. Many people feel you
shouldn’t mix languages when you invent words, but IBM, who coined the term
“hexadecimal” in the 1960s, didn’t think their corporate image could withstand
“sexadecimal”.

CS33 Intro to Computer Systems IV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Base?

• 1999
– base 10

» 9∙100+9∙101+9∙102+1∙103

– base 2
» 11111001111

• 1∙20+1∙21+1∙22+1∙23+0∙24+0∙25+1∙26+1∙27+1∙28+1∙29+1∙210

– base 8
» 3717

• 7∙80+1∙81+7∙82+3∙83

» why are we interested?
– base 16

» 7CF
• 15∙160+12∙161+7∙162

» why are we interested?

Note that a byte consists of two hexadecimal digits, which are sometimes known as
“nibbles”. A 32-bit computer word would then have eight nibbles; a 64-bit computer
word would have sixteen nibbles.

Note that for the moment we consider only unsigned integers: i.e., integers whose values
are nonnegative. (We explain signed integers in a week or so.)

CS33 Intro to Computer Systems IV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Words …

0 1 1 1 1 1 0 0 1 1 1 1 12-bit computer
word

3 7 1 7

0 0 0 0 0 1 1 1 1 1 0 0 16-bit computer
word1 1 1 1

0 7 C F

This function prints the base base representation of num. The “%” operator yields the
remainder. E.g., “10%3” evaluates to 1: the remainder after dividing 10 by 3. We are
doing integer division, thus the result of dividing 10 by 3 is 3. (Note that the “…” is not
heretofore unexplained C syntax, but is shorthand for “fill this in to the extent needed.”)

CS33 Intro to Computer Systems IV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Base Conversion Algorithm
void baseX(unsigned int num, unsigned int base) {
 char digits[] = {'0', '1', '2', '3', '4', '5', '6', … };
 char buf[8*sizeof(unsigned int)+1];
 int i;

 for (i = sizeof(buf) - 2; i >= 0; i--) {
 buf[i] = digits[num%base];
 num /= base;
 if (num == 0)
 break;
 }

 buf[sizeof(buf) - 1] = '\0';
 printf("%s\n", &buf[i]);
}

“bc” (it stands for basic calculator, or perhaps better calculator) is a standard Unix
command that handles arbitrary-precision arithmetic. Among its features is the ability to
specify which base to use for input and output of numbers. The default base for both
input and output is ten. Setting obase to 16 sets the base for output to 16. Similarly,
one can change the base for input numbers by setting ibase. Note that names of digits
beyond 9 are upper-case letters (to avoid syntax issues when using variables, which are
constrained to be made up of lower-case letters).

CS33 Intro to Computer Systems IV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Or …

$ bc

obase=16
1999
7CF
$

CS33 Intro to Computer Systems IV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

• What’s the decimal (base 10) equivalent of
2516?
a) 19
b) 35
c) 37
d) 38

Supplied by CMU.

Note that C supports numbers written in octal (base-8) notation. They are written with a
leading 0. Thus 016 is the same as 14, which is the same as 0xe.

CS33 Intro to Computer Systems IV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Encoding Byte Values

• Byte = 8 bits
– binary 000000002 to 111111112
– octal 08 to 3778

» write 3778 in C as
• 0377

– decimal: 010 to 25510
– hexadecimal 0016 to FF16
» base 16 number representation
» use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
» write FA1D37B16 in C as

• 0xFA1D37B
• 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Deci
mal

Octa
l

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

Binary

If a computer word is to be interpreted as an unsigned integer, we can do so as shown in
the slide for 32-bit integers. Thus, integers are represented in binary (base-2) notation in
the computer. We'll discuss representing negative integers in an upcoming lecture.

CS33 Intro to Computer Systems IV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unsigned 32-Bit Integers

value =

(we ignore negative integers for now)

b31 b30 b29 … b2 b1 b0

!
𝒊"𝟎

𝟑𝟏

𝒃𝒊 # 𝟐𝒊

Here n is an unsigned int whose value is 57 (expressed in base 10). As we've seen, it's
represented in the computer in binary. When we print its value using printf, we choose
to view it in the base specified by the format code. %b means binary, %u means decimal
(assuming an unsigned int), and %x means hexadecimal. We could use %o to print a
value in octal.

Note, in the arguments for printf, that the format string is in two parts. C allows you to
do this: "string 1 " "string 2" is treated the same as "string1 string2".

CS33 Intro to Computer Systems IV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Storing and Viewing Ints

int main() {
 unsigned int n = 57;
 printf("binary: %b, decimal: %u, "
 "hex: %x\n", n, n, n);
 return 0;
}

$./a.out
binary: 111001, decimal: 57, hex: 39
$

Supplied by CMU.

CS33 Intro to Computer Systems IV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Boolean Algebra
• Developed by George Boole in 19th Century
– algebraic representation of logic
» encode “true” as 1 and “false” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

Supplied by CMU.

CS33 Intro to Computer Systems IV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Boolean Algebras

• Operate on bit vectors
– operations applied bitwise

• All of the properties of boolean algebra apply

01101001
& 01010101

01101001
| 01010101

01101001
^ 01010101

~ 01010101
 01000001 01111101 00111100 10101010

Supplied by CMU.

CS33 Intro to Computer Systems IV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Representing &
Manipulating Sets

• Representation
– width-w bit vector represents subsets of {0, …, w–1}
– aj = 1 iff j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

• Operations
& intersection 01000001 { 0, 6 }
| union 01111101 { 0, 2, 3, 4, 5, 6 }
^ symmetric difference 00111100 { 2, 3, 4, 5 }
~ complement 10101010 { 1, 3, 5, 7 }

Supplied by CMU.

CS33 Intro to Computer Systems IV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Bit-Level Operations in C

• Operations &, |, ~, ^ available in C
– apply to any “integral” data type

» long, int, short, char
– view arguments as bit vectors
– arguments applied bit-wise

• Examples (char datatype)
~0x41 ® 0xBE

~010000012 ® 101111102
~0x00 ® 0xFF

~000000002 ® 111111112
0x69 & 0x55 ® 0x41

011010012 & 010101012 ® 010000012
0x69 | 0x55 ® 0x7D

011010012 | 010101012 ® 011111012

Supplied by CMU.

In the last example, since expressions are evaluated left to right and evaluation stops
once the result is known, there's no need to evaluate the complicated function following
p if p is false, since we know the final result will be false.

CS33 Intro to Computer Systems IV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Contrast: Logic Operations in C

• Contrast to Logical Operators
– &&, ||, !
» view 0 as “false”
» anything nonzero as “true”
» always return 0 or 1
» early termination/short-circuited execution

• Examples (char datatype)
!0x41 ® 0x00
!0x00 ® 0x01
!!0x41 ® 0x01

0x69 && 0x55 ® 0x01
0x69 || 0x55 ® 0x01
p && complicated_function(x)

Supplied by CMU.

CS33 Intro to Computer Systems IV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Contrast: Logic Operations in C

• Contrast to Logical Operators
– &&, ||, !
» view 0 as “false”
» anything nonzero as “true”
» always return 0 or 1
» early termination/short-circuited execution

• Examples (char datatype)
!0x41 ® 0x00
!0x00 ® 0x01
!!0x41 ® 0x01

0x69 && 0x55 ® 0x01
0x69 || 0x55 ® 0x01
p && complicated_function(x)

Watch out for && vs. & (and || vs. |)…
One of the more common oopsies in
C programming

Recall that a char is an 8-bit integer.

CS33 Intro to Computer Systems IV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

• Which of the following would determine
whether the next-to-the-rightmost bit of Y
(declared as a char) is 1? (I.e., the expression
evaluates to true if and only if that bit of Y is 1.)
a) Y & 0x02
b) !((~Y) & 0x02)
c) none of the above
d) both a and b

Supplied by CMU.

Why we need both logical and arithmetic shifts should be clear by the end of an
upcoming lecture. If one is applying a right shift to an int, it will be an arithmetic right
shift. For unsigned ints, right shifts are logical right shifts. Why this is so will be
explained in the upcoming lecture (it has to do with the representation of negative
numbers).

CS33 Intro to Computer Systems IV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shift Operations

• Left Shift: x << y
– shift bit-vector x left y positions

• throw away extra bits on left
» fill with 0’s on right

• Right Shift: x >> y
– shift bit-vector x right y positions
» throw away extra bits on right

– logical shift
» fill with 0’s on left

– arithmetic shift
» replicate most significant bit on left

• Undefined Behavior
– shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

The above applies analogously to --b and b--; these are known as pre-decrement and
post-decrement.

While these operators can be (very successfully) used to make code extremely hard to
read; if used well, they can actually make code easier to read as well as to write.

CS33 Intro to Computer Systems IV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression

• Pre-increment
– ++b means add one to b; the result of the

expression is this new value of b
• Post-increment

– b++ means the value of the expression is the
current value of b, then add one to b

• Example

int b=1;
printf("%d\n", (++b)*b);

output:
4

int b=1;
printf("%d\n", (b++)*b);

output:
2

CS33 Intro to Computer Systems IV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global Variables

#define NUM_ROWS 3
#define NUM_COLS 4
int m[NUM_ROWS][NUM_COLS];

int main() {
 int row, col;
 for(row=0; row<NUM_ROWS; row++)
 for(col=0; col<NUM_COLS; col++)
 m[row][col] = row*NUM_COLS+col;
 return 0;
}

The scope is global;
m can be used

 by all functions

Note that the reference to “m” gives the address of the array in memory.

The point of the slide is that global variables are in a different area of memory
than are local variables.

CS33 Intro to Computer Systems IV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global Variables

#define NUM_ROWS 3
#define NUM_COLS 4
int m[NUM_ROWS][NUM_COLS];

int main() {
 int row, col;
 printf("%u\n", m);
 printf("%u\n", &row);
 return 0;
} $./a.out

8384
3221224352

If you don’t explicitly initialize a global variable, its initial value is guaranteed
to be zero.

CS33 Intro to Computer Systems IV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global Variables are Initialized!

#define NUM_ROWS 3
#define NUM_COLS 4
int m[NUM_ROWS][NUM_COLS];

int main() {
 printf("%d\n", m[0][0]);
 return 0;
}

$./a.out
0

Here we have two declarations for a – one as a global variable and one as a local
variable. References to a in main are to the local variable, but elsewhere references are
to the global variable.

CS33 Intro to Computer Systems IV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope
int a; // global variable

int main() {
 int a; // local variable
 a = 0;
 proc();

 printf("a = %d\n", a); // what’s printed?
 return 0;
}

int proc() {
 a = 1;
 return a;
}

$./a.out
0

Here a is declared as a parameter to proc, thus references to a in proc are to the
parameter and not to the global variable.

CS33 Intro to Computer Systems IV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope (continued)

int a; // global variable

int main() {
 a = 2;
 proc(1);
 return 0;
}

int proc(int a) {
 printf("a = %d\n", a); // what’s printed?
 return a;
}

$./a.out
1

Syntax error: one can’t have a local variable in a scope in which a parameter is declared
with the same name.

CS33 Intro to Computer Systems IV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope (still continued)

int a; // global variable

int main() {
 a = 2;
 proc(1);
 return 0;
}

int proc(int a) {
 int a;
 printf("a = %d\n", a); // what’s printed?

 return a;
}

$ gcc prog.c
prog.c:12:8: error: redefinition of 'a'

int a;
^

CS33 Intro to Computer Systems IV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope (more ...)

int a; // global variable

int proc() {
 {
 // the brackets define a new scope
 int a;
 a = 6;
 }
 printf("a = %d\n", a); // what’s printed?
 return 0;
} $./a.out

0

CS33 Intro to Computer Systems IV–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

int a;

int proc(int b) {
 {int b=6;}
 a = b;

 return a+2;
}

int main() {
 {int a = proc(4);}
 printf("a = %d\n", a);
 return 0;
}

• What’s printed?
a) 0
b) 4
c) 6
d) 8
e) nothing; there’s

a syntax error

It's often convenient to declare a for loop's index variable in the for loop, as shown in the
slide.

CS33 Intro to Computer Systems IV–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope and For Loops (1)

int A[100];
for (int i=0; i<100; i++) {
 // i is defined in this scope
 A[i] = i;
}

But be careful – the scope of such an index variable does not extend outside of the for
loop.

CS33 Intro to Computer Systems IV–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope and For Loops (2)

int A[100];
initializeA(A);
for (int i=0; i<100; i++) {
 // i is defined in this scope
 if (A[i] < 0)
 break;
}
if (i != 100)
 printf("A[%d] is negative\n", i);

syntax error:
reference to i is
out of scope.

Even though a is given a value the first time func is called, on func’s second invocation
a is not given a value and thus the result that’s printed is “undefined”. This is because
the lifetime of a is just for the length of time its scope is active, which is from when the
execution of func starts to when func returns. The a in the next invocation of func is
different from the previous a.

CS33 Intro to Computer Systems IV–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime
int count;

int main() {
 func();
 ...
 func(); // what’s printed by func?
 return 0;
}

int func() {
 int a;
 if (count == 0) a = 1;
 count = count + 1;
 printf("%d\n", a);
 return 0;
}

% ./a.out
1
-38762173

In this case, a is global and thus the value set for it in one invocation of func is still
there for the next invocation – the lifetime of a is that of the program itself.

CS33 Intro to Computer Systems IV–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (continued)

int main() {
 func(1); // what’s printed by func?
 return 0;
}
int a;
int func(int x) {
 if (x == 1) {
 a = 1;
 func(2);
 printf("%d\n", a);
 } else
 a = 2;
 return 0;
}

% ./a.out
2

Here a is local again. func is called (recursively) from within itself: the recursive
invocation of func modifies a different a than is used in the first invocation. Thus, the
value printed is 1.

CS33 Intro to Computer Systems IV–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (still continued)

int main() {
 func(1); // what’s printed by func?
 return 0;
}

int func(int x) {
 int a;
 if (x == 1) {
 a = 1;
 func(2);
 printf("a = %d\n", a);
 } else
 a = 2;
 return 0;
}

% ./a.out
1

When a function returns, its local variables become out of scope and no longer active –
the lifetime of local variables is from the instant the function is called to when it returns.
Thus, a pointer to a local variable refers to an undefined value if the variable is of a
function invocation that is no longer active.

CS33 Intro to Computer Systems IV–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (more ...)

int main() {
 int *a;
 a = func();
 printf("%d\n", *a); // what’s printed?
 return 0;
}

int *func() {
 int x;
 x = 1;
 return &x;
}

% ./a.out
23095689

Similarly, the lifetime of function arguments is the same as the lifetime of the function.

CS33 Intro to Computer Systems IV–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (and still more ...)

int main() {
 int *a;
 a = func(1);
 printf("%d\n", *a); // what’s printed?
 return 0;
}

int *func(int x) {
 return &x;
}

% ./a.out
98378932

CS33 Intro to Computer Systems IV–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Rules

• Global variables exist for the duration of
program’s lifetime

• Local variables and arguments exist for the
duration of the execution of the function
– from call to return
– each execution of a function results in a new

instance of its arguments and local variables

Function calling in C (and in most other languages) is implemented on stacks.
Associated with an invocation of a function is a stack frame, which contains, among
other things, its arguments and local variables. When a function is called, a stack frame
for it is pushed onto the stack. When it returns, its stack frame is popped off the stack.

CS33 Intro to Computer Systems IV–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation: Stacks
int main() {
 int a;
 func1(0);
 ...
}
int func1(int x) {
 int a,b;
 if (x==0) func2(a,2);
 ...
}
int func2(int x, int y) {
 int a,b,c;
 func1(1);
 ...
}

a

arg x

a, b

arg x,y

a, b, c

arg x

a, b

main’s stack frame

func1’s stack frame

func2’s stack frame

func1’s stack frame

CS33 Intro to Computer Systems IV–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation: Stacks
int main() {
 int a;
 func1(0);
 ...
}
int func1(int x) {
 int a,b;
 if (x==0) func2(a,2);
 ...
}
int func2(int x, int y) {
 int a,b,c;
 func1(1);
 ...
}

a

arg x

a, b

arg x,y

a, b, c

arg x

a, b

main’s stack frame

func1’s stack frame

func2’s stack frame

func1’s stack frame

CS33 Intro to Computer Systems IV–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

void func(int a) {
 int b=2;
 if (a == 1) {
 func(2);
 printf("%d\n", b);
 } else {
 b = a*(b++)*b;
 }
}
int main() {
 func(1);

 return 0;
}

• What’s printed?
a) 0
b) 1
c) 2
d) 4

Static local variables have the same scope as other local variables, but their
values are retained across calls to the functions they are declared in. Like
global variables, uninitialized static local variables are implicitly initialized to
zero. Initialization happens just once, when the program starts up. Thus in
sub2, var is set to 1 when the program starts, and not every time sub2 is
called.

CS33 Intro to Computer Systems IV–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static Local Variables

int *sub1() {
 int var = 1;
 …
 return &var;
 /* amazingly illegal */

}

int *sub2() {
 static int var = 1;
 …
 return &var;
 /* (amazingly) legal */
}

• Scope
• like local variables

• Lifetime
• like global variables

• Initialized just once
• when program begins
• implicit initialization to 0

CS33 Intro to Computer Systems IV–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 5
int sub() {
 static int svar = 2;
 int lvar = 1;
 svar += lvar;
 lvar++;
 return svar;
}

int main() {
 sub();
 printf("%d\n", sub());

 return 0;
}

What is printed?

a) 2
b) 3
c) 4
d) 5

Let’s step back and revisit our concept of virtual memory. All of a program, both code
and data, resides in virtual memory. We begin to explore how all of this is organized.
This is neither a complete nor a totally accurate picture, but serves to explain what
we’ve seen so far. Executable code (also known, historically, as text) resides at the lower-
addressed regions of virtual memory. After it comes a region of memory that contains
global and static local data. At the high-addressed end of the address space is memory
reserved for the stack. The stack itself starts at the high end of this region and grows (in
response to function calls, etc.). If the end of the stack reaches the end of the region of
memory reserved for it, a segmentation fault occurs and the program terminates.

This is clearly very rough. As we learn more about how computer systems work, we’ll fill
in more and more of the details.

Note that here our diagram of memory has lower addresses at the top, higher addresses
at the bottom. Soon we'll turn this around and draw it the other way, with higher
addresses at the top, lower addresses at the bottom – it generally makes more sense to
do it this way.

CS33 Intro to Computer Systems IV–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression: Where Stuff Is
(Roughly)

0:

2n-1:

Virtual
Memory

Code
(aka text)

Global and
Static

Local Data

Stack

The function scanf is called to read input, doing essentially the reverse of what
printf does. Its first argument is a format string, like that of printf. Its
subsequent arguments are pointers to locations where the input should be
copied (after format conversion as specified in the format string). Note that we
must have pointers for these arguments, not simple values, since arguments
are passed by value. (Make sure you understand why this is important!)

The format conversion done is the reverse of what printf does. For example,
printf, given the %d format code, converts the machine representation of an
integer into its string representation in decimal notation. scanf with the same
format code takes the string representation of a number in decimal notation
and converts it to the machine representation of an integer.

CS33 Intro to Computer Systems IV–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

scanf: Reading Data

i
f

int main() {
 int i, j;
 scanf("%d %d", &i, &j);
 printf("%d, %d", i, j);
}

Two parts
• formatting instructions

– whitespace in format string matches any amount of white
space in input
» whitespace is space, tab, newline (‘\n’)

• arguments: must be addresses
– why?

$./a.out
 3 12
3, 12

CS33 Intro to Computer Systems IV–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define (again)

#define CtoF(cel) (9.0*cel)/5.0 + 32.0

Simple textual substitution:

float tempc = 20.0;
float tempf = CtoF(tempc);
// same as tempf = (9.0*tempc)/5.0 + 32.0;

Be careful with how arguments are used! Note the use of parentheses in the
second version.

CS33 Intro to Computer Systems IV–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Careful ...

#define CtoF(cel) (9.0*cel)/5.0 + 32.0

float tempc = 20.0;
float tempf = CtoF(tempc+10);
// same as tempf = (9.0*tempc+10)/5.0 + 32.0;

#define CtoF(cel) (9.0*(cel))/5.0 + 32.0

float tempc = 20.0;
float tempf = CtoF(tempc+10);
// same as tempf = (9.0*(tempc+10))/5.0 + 32.0;

One can define DEBUG simply by using the statement

#define DEBUG

or by supplying the flag –D=DEBUG to gcc.

Note that in addition to #ifdef (which should be read "if defined"), there's also #ifndef
(which should be read "if not defined"). Thus the code in slide could also be written

#ifndef DEBUG
 #define DEBUG_PRINT(a1, a2)
#else
 #define DEBUG_PRINT(a1, a2) printf(a1,a2)
#endif

CS33 Intro to Computer Systems IV–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conditional Compilation

#ifdef DEBUG
 #define DEBUG_PRINT(a1, a2) printf(a1,a2)
#else
 #define DEBUG_PRINT(a1, a2)
#endif

int buggy_func(int x) {
 DEBUG_PRINT("x = %d\n", x);

 // printed only if DEBUG is defined
 ...
}

