
CS33 Intro to Computer Systems V–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 5

It's often convenient to declare a for loop's index variable in the for loop, as shown in the
slide.

CS33 Intro to Computer Systems V–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope and For Loops (1)

int A[100];
for (int i=0; i<100; i++) {
 // i is defined in this scope
 A[i] = i;
}

But be careful – the scope of such an index variable does not extend outside of the for
loop.

CS33 Intro to Computer Systems V–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope and For Loops (2)

int A[100];
initializeA(A);
for (int i=0; i<100; i++) {
 // i is defined in this scope
 if (A[i] < 0)
 break;
}
if (i != 100)
 printf("A[%d] is negative\n", i);

syntax error:
reference to i is
out of scope.

Even though a is given a value the first time func is called, on func’s second invocation
a is not given a value and thus the result that’s printed is “undefined”. This is because
the lifetime of a is just for the length of time its scope is active, which is from when the
execution of func starts to when func returns. The a in the next invocation of func is
different from the previous a.

CS33 Intro to Computer Systems V–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime
int count;

int main() {
 func();
 ...
 func(); // what’s printed by func?
 return 0;
}

int func() {
 int a;
 if (count == 0) a = 1;
 count = count + 1;
 printf("%d\n", a);
 return 0;
}

% ./a.out
1
-38762173

In this case, a is global and thus the value set for it in one invocation of func is still
there for the next invocation – the lifetime of a is that of the program itself.

CS33 Intro to Computer Systems V–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (continued)

int main() {
 func(1); // what’s printed by func?
 return 0;
}
int a;
int func(int x) {
 if (x == 1) {
 a = 1;
 func(2);
 printf("%d\n", a);
 } else
 a = 2;
 return 0;
}

% ./a.out
2

Here a is local again. func is called (recursively) from within itself: the recursive
invocation of func modifies a different a than is used in the first invocation. Thus, the
value printed is 1.

CS33 Intro to Computer Systems V–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (still continued)

int main() {
 func(1); // what’s printed by func?
 return 0;
}

int func(int x) {
 int a;
 if (x == 1) {
 a = 1;
 func(2);
 printf("a = %d\n", a);
 } else
 a = 2;
 return 0;
}

% ./a.out
1

When a function returns, its local variables become out of scope and no longer active –
the lifetime of local variables is from the instant the function is called to when it returns.
Thus, a pointer to a local variable refers to an undefined value if the variable is of a
function invocation that is no longer active.

CS33 Intro to Computer Systems V–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (more ...)

int main() {
 int *a;
 a = func();
 printf("%d\n", *a); // what’s printed?
 return 0;
}

int *func() {
 int x;
 x = 1;
 return &x;
}

% ./a.out
23095689

Similarly, the lifetime of function arguments is the same as the lifetime of the function.

CS33 Intro to Computer Systems V–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Lifetime (and still more ...)

int main() {
 int *a;
 a = func(1);
 printf("%d\n", *a); // what’s printed?
 return 0;
}

int *func(int x) {
 return &x;
}

% ./a.out
98378932

CS33 Intro to Computer Systems V–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Rules

• Global variables exist for the duration of
program’s lifetime

• Local variables and arguments exist for the
duration of the execution of the function
– from call to return
– each execution of a function results in a new

instance of its arguments and local variables

Function calling in C (and in most other languages) is implemented on stacks.
Associated with an invocation of a function is a stack frame, which contains, among
other things, its arguments and local variables. When a function is called, a stack frame
for it is pushed onto the stack. When it returns, its stack frame is popped off the stack.

CS33 Intro to Computer Systems V–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation: Stacks
int main() {
 int a;
 func1(0);
 ...
}
int func1(int x) {
 int a,b;
 if (x==0) func2(a,2);
 ...
}
int func2(int x, int y) {
 int a,b,c;
 func1(1);
 ...
}

a

arg x

a, b

arg x,y

a, b, c

arg x

a, b

main’s stack frame

func1’s stack frame

func2’s stack frame

func1’s stack frame

Each of the functions returns to its caller.

CS33 Intro to Computer Systems V–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation: Stacks
int main() {
 int a;
 func1(0);
 ...
}
int func1(int x) {
 int a,b;
 if (x==0) func2(a,2);
 ...
}
int func2(int x, int y) {
 int a,b,c;
 func1(1);
 ...
}

a

arg x

a, b

arg x,y

a, b, c

arg x

a, b

main’s stack frame

func1’s stack frame

func2’s stack frame

func1’s stack frame

CS33 Intro to Computer Systems V–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void func(int a) {
 int b=2;
 if (a == 1) {
 func(2);
 printf("%d\n", b);
 } else {
 b = a*(b++)*b;
 }
}
int main() {
 func(1);

 return 0;
}

• What’s printed?
a) 0
b) 1
c) 2
d) 4

Static local variables have the same scope as other local variables, but their
values are retained across calls to the procedures they are declared in. Like
global variables, uninitialized static local variables are implicitly initialized to
zero. Initialization happens just once, when the program starts up. Thus, in
sub2, is set to 1 when the program starts, and not every time sub2 is called.

CS33 Intro to Computer Systems V–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static Local Variables

int *sub1() {
 int var = 1;
 …
 return &var;
 /* amazingly illegal */

}

int *sub2() {
 static int var = 1;
 …
 return &var;
 /* (amazingly) legal */
}

• Scope
• like local variables

• Lifetime
• like global variables

• Initialized just once
• when program begins
• implicit initialization to 0

CS33 Intro to Computer Systems V–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
int sub() {
 static int svar = 2;
 int lvar = 1;
 svar += lvar;
 lvar++;
 return svar;
}

int main() {
 sub();
 printf("%d\n", sub());

 return 0;
}

What is printed?

a) 2
b) 3
c) 4
d) 5

Let’s step back and revisit our concept of virtual memory. All of a program, both code
and data, resides in virtual memory. We begin to explore how it is organized. What’s
shown in the slide is neither a complete nor a totally accurate picture, but serves to
explain what we’ve seen so far. Executable code (also known, historically, as text)
resides at the lower-addressed regions of virtual memory. After it comes a region of
memory that contains global and static local data. At the high-addressed end of the
address space is memory reserved for the stack. The stack itself starts at the high end of
this region and grows (in response to function calls, etc.). If the end of the stack reaches
the end of the region of memory reserved for it, a segmentation fault occurs, and the
program terminates.

This is clearly very rough. As we learn more about how computer systems work, we’ll fill
in more and more of the details.

CS33 Intro to Computer Systems V–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression: Where Stuff Is
(Roughly)

0:

2n-1:

Virtual
Memory

Code
(aka text)

Global and
Static

Local Data

Stack

The function scanf is called to read input, doing essentially the reverse of what
printf does. Its first argument is a format string, like that of printf. Its
subsequent arguments are pointers to locations where the input should be
copied (after format conversion as specified in the format string). Note that we
must have pointers for these arguments, not simple values, since arguments
are passed by value. (Make sure you understand why this is important!)

The format conversion done is the reverse of what printf does. For example,
printf, given the %d format code, converts the machine representation of an
integer into its string representation in decimal notation. scanf with the same
format code takes the string representation of a number in decimal notation
and converts it to the machine representation of an integer.

CS33 Intro to Computer Systems V–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

scanf: Reading Data

i
f

int main() {
 int i, j;
 scanf("%d %d", &i, &j);
 printf("%d, %d", i, j);
}

Two parts
• formatting instructions

– whitespace in format string matches any amount of white
space in input
» whitespace is space, tab, newline (‘\n’)

• arguments: must be addresses
– why?

$./a.out
 3 12
3, 12

CS33 Intro to Computer Systems V–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

#define (again)

#define CtoF(cel) (9.0*cel)/5.0 + 32.0

Simple textual substitution:

float tempc = 20.0;
float tempf = CtoF(tempc);
// same as tempf = (9.0*tempc)/5.0 + 32.0;

Be careful with how arguments are used! Note the use of parentheses in the
second version.

CS33 Intro to Computer Systems V–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Careful ...

#define CtoF(cel) (9.0*cel)/5.0 + 32.0

float tempc = 20.0;
float tempf = CtoF(tempc+10);
// same as tempf = (9.0*tempc+10)/5.0 + 32.0;

#define CtoF(cel) (9.0*(cel))/5.0 + 32.0

float tempc = 20.0;
float tempf = CtoF(tempc+10);
// same as tempf = (9.0*(tempc+10))/5.0 + 32.0;

One can define DEBUG simply by using the statement

#define DEBUG

or by supplying the flag –D=DEBUG to gcc.

Note that in addition to #ifdef (which should be read "if defined"), there's also #ifndef
(which should be read "if not defined"). Thus, the code in slide could also be written

#ifndef DEBUG
 #define DEBUG_PRINT(a1, a2)
#else
 #define DEBUG_PRINT(a1, a2) printf(a1,a2)
#endif

CS33 Intro to Computer Systems V–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conditional Compilation

#ifdef DEBUG
 #define DEBUG_PRINT(a1, a2) printf(a1,a2)
#else
 #define DEBUG_PRINT(a1, a2)
#endif

int buggy_func(int x) {
 DEBUG_PRINT("x = %d\n", x);

 // printed only if DEBUG is defined
 ...
}

CS33 Intro to Computer Systems V–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Structures

struct ComplexNumber {
 float real;
 float imag;
};

struct ComplexNumber x;
x.real = 1.4;

x.imag = 3.65e-10;

Note that when we refer to members of a structure via a pointer, we use the “-
>” notation rather than the “.” notation.

CS33 Intro to Computer Systems V–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pointers to Structures

struct ComplexNumber {
 float real;
 float imag;
};

struct ComplexNumber x, *y;
x.real = 1.4;

x.imag = 3.65e-10;
y = &x;
y->real = 2.6523;
y->imag = 1.428e20;

This works, but note that the entirety of the struct arguments are copied to the
function, and the entirety of the result is copied back to the caller. This is no
big deal here, but, for larger structures, it might be a problem (due to the time
required to copy the data).

CS33 Intro to Computer Systems V–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

structs and Functions

struct ComplexNumber ComplexAdd(
 struct ComplexNumber a1,
 struct ComplexNumber a2) {
 struct ComplexNumber result;
 result.real = a1.real + a2.real;
 result.imag = a1.imag + a2.imag;
 return result;
}

This doesn’t work, since it returns a pointer to result that would not be in
scope once the procedure has returned. Thus, the returned pointer would
point to an area of memory with undefined contents.

CS33 Intro to Computer Systems V–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Would This Work?

struct ComplexNumber *ComplexAdd(
 struct ComplexNumber *a1,
 struct ComplexNumber *a2) {
 struct ComplexNumber result;
 result.real = a1->real + a2->real;
 result.imag = a1->imag + a2->imag;
 return &result;
}

This works fine: the caller provides the location to hold the result.

CS33 Intro to Computer Systems V–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How About This?

void ComplexAdd(
 struct ComplexNumber *a1,
 struct ComplexNumber *a2,
 struct ComplexNumber *result) {
 result->real = a1->real + a2->real;
 result->imag = a1->imag + a2->imag;
 return;
}

CS33 Intro to Computer Systems V–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using It …

struct ComplexNumber j1 = {3.6, 2.125};
struct ComplexNumber j2 = {4.32, 3.1416};
struct ComplexNumber sum;

ComplexAdd(&j1, &j2, &sum);

CS33 Intro to Computer Systems V–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays of structs

struct ComplexNumber j[10];
j[0].real = 8.127649;

j[0].imag = 1.76e18;

Subscripting (i.e., the “[]” operator) has a higher precedence than the “*”
operator. Thus, jp is an array of pointers to struct ComplexNumbers.

CS33 Intro to Computer Systems V–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arrays, Pointers, and structs

/* What's this? */
struct ComplexNumber *jp[10];

struct ComplexNumber j0;
jp[0] = &j0;

jp[0]->real = 13.6;

CS33 Intro to Computer Systems V–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory View

0
1
2
3
4
5
6
7
8
9

13.6j0:

jp

CS33 Intro to Computer Systems V–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

struct list_elem {
 int val;
 struct list_elem *next;
} a, b;

int main() {
 a->val = 1;
 a->next = &b;
 b->val = 2;
 printf("%d\n", a->next->val);
 return 0;
}

• What happens?
a) prints something

and terminates
b) seg fault
c) syntax error

CS33 Intro to Computer Systems V–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

struct list_elem {
 int val;
 struct list_elem *next;
} a, b;

int main() {
 a.val = 1;
 a.next = &b;
 b.val = 2;
 printf("%d\n", a.next.val);
 return 0;
}

• What happens?
a) prints something

and terminates
b) seg fault
c) syntax error

CS33 Intro to Computer Systems V–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 5

struct list_elem {
 int val;
 struct list_elem *next;
} a, b;

int main() {
 a.val = 1;
 b.val = 2;
 printf("%d\n", a.next->val);
 return 0;
}

• What happens?
a) prints something

and terminates
b) seg fault
c) syntax error

CS33 Intro to Computer Systems V–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 6

struct list_elem {
 int val;
 struct list_elem *next;
} a, b;

int main() {
 a.val = 1;
 a.next = &b;
 b.val = 2;
 printf("%d\n", a.next->val);
 return 0;
}

• What happens?
a) prints something

and terminates
b) seg fault
c) syntax error

for (;;)
 printf(“C does not have objects!\n”);

CS33 Intro to Computer Systems V–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Structures vs. Objects

• Are structs objects?

(What’s an object?)

This seems pretty weird at first glance. But keep in mind that the name of an array
refers to the address its first element, and does not represent the entire array. But the
name of a structure refers to the entire structure.

CS33 Intro to Computer Systems V–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Structures Containing Arrays

struct Array {
 int A[6];
} S1, S2;

int A1[6], A2[6];

A1 = A2;
 // not legal: array variables refer to the
 // addresses of the first elements

S1 = S2;

 // legal: structure variables refer to contents
 // of the entire structure

CS33 Intro to Computer Systems V–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Bit More Syntax …

• Constants
const double pi =
3.141592653589793238;

area = pi*r*r; /* legal */

pi = 3.0; /* illegal */

Note that constant_ptr_to_constant’s value may not be changed, and the value of what it
points to may not be changed.

CS33 Intro to Computer Systems V–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Syntax …
const int six = 6;
int nonconstant;
const int *ptr_to_constant;
int *const constant_ptr = &nonconstant;
const int *const constant_ptr_to_constant = &six;

ptr_to_constant = &six;
 // ok
*ptr_to_constant = 7;
 // not ok
*constant_ptr = 7;
 // ok
constant_ptr = &six;
 // not ok

CS33 Intro to Computer Systems V–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

And Still More …

• Array initialization
int FirstSixPrimes[6] = {2, 3, 5, 7, 11, 13};
int SomeMorePrimes[] = {17, 19, 23, 29};
int MoreWithRoomForGrowth[10] = {31, 37};
int MagicSquare[][] = {{2, 7, 6},
 {9, 5, 1},
 {4, 3, 8}};

ASCII is appropriate for English. European colonial powers devised written
forms of some languages, such as Swahili, using the English alphabet. What
differentiates the English alphabet from those of other European languages is
the absence of diacritical marks. ASCII has no support for characters with
diacritical marks and works for English, Swahili, and very few other languages.
(Swahili may be written either as a Latin script, which can be represented in
ASCII, as well as an Arabic script, which doesn't have a standard ASCII
representation. See https://www.omniglot.com/writing/swahili.htm.)

CS33 Intro to Computer Systems V–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• ASCII
– American Standard Code for Information

Interchange

– works for:
» English
» Swahili

» not much else

– doesn’t work for:
» French
» Spanish
» German
» Korean

» Arabic
» Sanskrit
» Chinese
» pretty much

everything else

The Unicode standard first came out in 1991. It defines a number of character
encodings. UTF-8, in which each character is represented with one to four bytes, is the
most commonly used, particularly on web sites. Being variable in length, its decoding
requires more computation than fixed-width character encodings. Unicode also defines
some fixed-with encodings, but these require more space than variable-width encodings.

CS33 Intro to Computer Systems V–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• Unicode
– support for the rest of world
– defines a number of encodings
– most common is UTF-8

» variable-length characters
» ASCII is a subset and represented in one byte
» larger character sets require an additional one to

three bytes
– not covered in CS 33

ASCII uses only seven bits. Most European languages can be coded with eight
bits (but not seven). Many Asian languages require far more than eight bits.

This table is a bit confusing: it’s presented in column-major order, meaning
that it’s laid out in columns. Thus, the value of the character ‘0’ is 48, the
value of ‘1’ is 49, the value of ‘2’ is 50, the value of ‘3’ is 51, etc. Note that
there are no printable characters in the "20" column.

Some of the characters require some explanation. ‘\a’ is the alarm or bell
character: it rings a bell. ‘\b’ is the backspace character. ‘\t’ is the horizontal
tab character (usually referred to just as “tab”). ‘\n’ is the newline character.
‘\v’ is the vertical tab character. ‘\f’ is the form-feed character, and ’\r’ is the
carriage-return character. Some of these characters are rarely, if ever, used.

CS33 Intro to Computer Systems V–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

ASCII Character Set

00 10 20 30 40 50 60 70 80 90 100 110 120

 0: \0 \n (2 < F P Z d n x
 1: \v) 3 = G Q [e o y
 2: \f sp * 4 > H R \ f p z
 3: \r ! + 5 ? I S] g q {
 4: " , 6 @ J T ^ h r |
 5: # - 7 A K U _ i s }
 6: $. 8 B L V ` j t ~
 7: \a % / 9 C M W a k u DEL
 8: \b & 0 : D N X b l v
 9: \t ' 1 ; E O Y c m w

A variable of type char may be thought of as an 8-bit int.

CS33 Intro to Computer Systems V–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

chars as Integers

char tolower(char c) {
 if (c >= 'A' && c <= 'Z')
 return c + 'a' – 'A';
 else
 return c;
}

CS33 Intro to Computer Systems V–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s:

Character Strings

char c = 'a';

s t r i n g \0

char *s = "string";

ac:

CS33 Intro to Computer Systems V–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Is there any difference between c1 and
c2 in the following?

char c1 = 'a';
char *c2 = "a";

CS33 Intro to Computer Systems V–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Yes!!

c2:

char c1 = 'a';

a \0

char *c2 = "a";

ac1:

Note that the declaration of s1 results in the allocation of 5 bytes of memory,
into which is copied the string “abcd” (including the null at the end).

CS33 Intro to Computer Systems V–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What do s1 and s2 refer to after the following is
executed?

 char s1[] = "abcd";
 char *s2 = s1;
 s1[0] = 'z';
 s2[2] = '\0';

Note that if either s1 or s2 is printed (e.g., printf(“%s”, s1)), all that will
appear is “zb” — this is because the null character terminates the string.
Recall that s1 is essentially a constant: its value cannot be changed (it points
to the beginning of the array of characters), but what it points to may certainly
be changed.

CS33 Intro to Computer Systems V–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s1:

b d \0

s2:

az c\0

String constants are stored in an area of memory that’s read-only, ensuring that they
really are constants; thus any attempt to modify them is doomed. In the example, s1 is a
pointer that points to such a read-only area of memory. This is unlike what was done
two slides ago, in which the string in read-only memory was copied into read-write
memory pointed to by s1.

CS33 Intro to Computer Systems V–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Weird …

Suppose we did it this way:

 char *s1 = "abcd";
 char *s2 = s1;
 s1[0] = 'z';
 s1[2] = '\0';

% gcc –o char char.c

% ./char

Segmentation fault

