
CS33 Intro to Computer Systems VI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 6

This seems pretty weird at first glance. But keep in mind that the name of an array
refers to the address its first element, and does not represent the entire array. But the
name of a structure refers to the entire structure.

CS33 Intro to Computer Systems VI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Structures Containing Arrays

struct Array {
 int A[6];
} S1, S2;

int A1[6], A2[6];

A1 = A2;
 // not legal: array variables refer to the
 // addresses of the first elements

S1 = S2;

 // legal: structure variables refer to contents
 // of the entire structure

CS33 Intro to Computer Systems VI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Bit More Syntax …

• Constants
const double pi =
3.141592653589793238;

area = pi*r*r; /* legal */

pi = 3.0; /* illegal */

Note that constant_ptr_to_constant’s value may not be changed, and the value of what it
points to may not be changed.

CS33 Intro to Computer Systems VI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Syntax …
const int six = 6;
int nonconstant;
const int *ptr_to_constant;
int *const constant_ptr = &nonconstant;
const int *const constant_ptr_to_constant = &six;

ptr_to_constant = &six;
 // ok
*ptr_to_constant = 7;
 // not ok
*constant_ptr = 7;
 // ok
constant_ptr = &six;
 // not ok

CS33 Intro to Computer Systems VI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

And Still More …

• Array initialization
int FirstSixPrimes[6] = {2, 3, 5, 7, 11, 13};
int SomeMorePrimes[] = {17, 19, 23, 29};
int MoreWithRoomForGrowth[10] = {31, 37};
int MagicSquare[][] = {{2, 7, 6},
 {9, 5, 1},
 {4, 3, 8}};

ASCII is appropriate for English. European colonial powers devised written
forms of some languages, such as Swahili, using the English alphabet. What
differentiates the English alphabet from those of other European languages is
the absence of diacritical marks. ASCII has no support for characters with
diacritical marks and works for English, Swahili, and very few other languages.
(Swahili may be written either as a Latin script, which can be represented in
ASCII, as well as an Arabic script, which doesn't have a standard ASCII
representation. See https://www.omniglot.com/writing/swahili.htm.)

CS33 Intro to Computer Systems VI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• ASCII
– American Standard Code for Information

Interchange

– works for:
» English
» Swahili

» not much else

– doesn’t work for:
» French
» Spanish
» German
» Korean

» Arabic
» Sanskrit
» Chinese
» pretty much

everything else

The Unicode standard first came out in 1991. It defines a number of character
encodings. UTF-8, in which each character is represented with one to four bytes, is the
most commonly used, particularly on web sites. Being variable in length, its decoding
requires more computation than fixed-width character encodings. Unicode also defines
some fixed-with encodings, but these require more space than variable-width encodings.

CS33 Intro to Computer Systems VI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• Unicode
– support for the rest of world
– defines a number of encodings
– most common is UTF-8

» variable-length characters
» ASCII is a subset and represented in one byte
» larger character sets require an additional one to

three bytes
– not covered in CS 33

ASCII uses only seven bits. Most European languages can be coded with eight
bits (but not seven). Many Asian languages require far more than eight bits.

This table is a bit confusing: it’s presented in column-major order, meaning
that it’s laid out in columns. Thus, the value of the character ‘0’ is 48, the
value of ‘1’ is 49, the value of ‘2’ is 50, the value of ‘3’ is 51, etc. Note that
there are no printable characters in the "20" column.

Some of the characters require some explanation. ‘\a’ is the alarm or bell
character: it rings a bell. ‘\b’ is the backspace character. ‘\t’ is the horizontal
tab character (usually referred to just as “tab”). ‘\n’ is the newline character.
‘\v’ is the vertical tab character. ‘\f’ is the form-feed character, and ’\r’ is the
carriage-return character. Some of these characters are rarely, if ever, used.

CS33 Intro to Computer Systems VI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

ASCII Character Set

00 10 20 30 40 50 60 70 80 90 100 110 120

 0: \0 \n (2 < F P Z d n x
 1: \v) 3 = G Q [e o y
 2: \f sp * 4 > H R \ f p z
 3: \r ! + 5 ? I S] g q {
 4: " , 6 @ J T ^ h r |
 5: # - 7 A K U _ i s }
 6: $. 8 B L V ` j t ~
 7: \a % / 9 C M W a k u DEL
 8: \b & 0 : D N X b l v
 9: \t ' 1 ; E O Y c m w

A variable of type char may be thought of as an 8-bit int.

CS33 Intro to Computer Systems VI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

chars as Integers

char tolower(char c) {
 if (c >= 'A' && c <= 'Z')
 return c + 'a' – 'A';
 else
 return c;
}

CS33 Intro to Computer Systems VI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s:

Character Strings

char c = 'a';

s t r i n g \0

char *s = "string";

ac:

CS33 Intro to Computer Systems VI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Is there any difference between c1 and
c2 in the following?

char c1 = 'a';
char *c2 = "a";

CS33 Intro to Computer Systems VI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Yes!!

c2:

char c1 = 'a';

a \0

char *c2 = "a";

ac1:

Note that the declaration of s1 results in the allocation of 5 bytes of memory,
into which is copied the string “abcd” (including the null at the end).

CS33 Intro to Computer Systems VI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What do s1 and s2 refer to after the following is
executed?

 char s1[] = "abcd";
 char *s2 = s1;
 s1[0] = 'z';
 s2[2] = '\0';

Note that if either s1 or s2 is printed (e.g., printf(“%s”, s1)), all that will
appear is “zb” — this is because the null character terminates the string.
Recall that s1 is essentially a constant: its value cannot be changed (it points
to the beginning of the array of characters), but what it points to may certainly
be changed.

CS33 Intro to Computer Systems VI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s1:

b d \0

s2:

az c\0

String constants are stored in an area of memory that’s read-only, ensuring that they
really are constants; thus any attempt to modify them is doomed. In the example, s1 is a
pointer that points to such a read-only area of memory. This is unlike what was done
two slides ago, in which the string in read-only memory was copied into read-write
memory pointed to by s1.

CS33 Intro to Computer Systems VI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Weird …

Suppose we did it this way:

 char *s1 = "abcd";
 char *s2 = s1;
 s1[0] = 'z';
 s1[2] = '\0';

% gcc –o char char.c

% ./char

Segmentation fault

The answer to the first question is no: the assignment is a syntax error, since the value
of s2 is the address of the array, which cannot be changed. What we really want to do is
copy the array pointed to by s1 into the array pointed to by s2.

It would not work if s2 were declared simply as a pointer. The original s2, declared as an
array, has 5 bytes of memory associated with it, which is sufficient space to hold the
string that’s being copied. Thus, the original s2 points to an area of memory suitable for
holding a copy of the string. The second s2, being declared as simply a pointer and not
given an initial value, points to an unknown location in memory. Copying the string into
what s2 points to will probably lead to disaster.

CS33 Intro to Computer Systems VI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Copying Strings (1)

char s1[] = "abcd";
 char s2[5];

 s2 = s1; // does this do anything useful?

 // correct code for copying a string
 for (i=0; s1[i] != '\0'; i++)
 s2[i] = s1[i];
 s2[i] = '\0';

 // would it work if s2 were declared:

 char *s2;
 // ?

The answer, of course, is that the first for loop doesn’t work, since there’s not enough
room in the array referred to by s2 to hold the contents of the array referred to by s1.
Note that “&&” is the AND operator in C.
The correct way to copy a string is shown in the code beginning with the second for loop,
which checks the length of the target: it copies no more than 4 bytes plus a null byte
into s2, whose size is 5 bytes.

CS33 Intro to Computer Systems VI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Copying Strings (2)

char s1[] = "abcdefghijklmnopqrstuvwxyz";
 char s2[5];

 for (i=0; s1[i] != '\0'; i++)
 s2[i] = s1[i];
 s2[i] = '\0';

 for (i=0; (i<4) && (s1[i] != '\0'); i++)
 s2[i] = s1[i];
 s2[i] = '\0';

Does this work?

Works!

sizeof(s1) yields the size of the variable s1, which, on a 64-bit architecture, is 8 bytes.

CS33 Intro to Computer Systems VI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

String Length

char *s1;

 s1 = produce_a_string();
 // how long is the string?

 sizeof(s1); // doesn’t yield the length!!

 for (i=0; s1[i] != '\0'; i++)
 ;
 // number of characters in s1 is i
 // (not including the terminating '\0')

sizeof(s) is 5 because 5 bytes of storage were allocated to hold its value (including the
null).

sizeof(s1) is 8 because it’s a pointer to a char, and pointers occupy 8 bytes.

sizeof(s2) is 12 because 12 bytes of storage were allocated for it.

CS33 Intro to Computer Systems VI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Size

int main() {
 char s[] = "1234";
 printf("%d\n", sizeof(s));
 proc(s, 5);
 return 0;
}

void proc(char s1[], int len) {
 char s2[12];
 printf("%d\n", sizeof(s1));
 printf("%d\n", sizeof(s2));
}

$ gcc –o size size.c
$./size
5
8
12
$

CS33 Intro to Computer Systems VI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void proc(char s[9]) {
 printf("%d\n", sizeof(s));
}

What’s printed?
a) 7
b) 8
c) 9
d) 10

Note that comparing s1 and s2 simply compares their numeric values as pointers, it
doesn’t take into account what they point to.

CS33 Intro to Computer Systems VI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Comparing Strings (1)

char *s1;
 char *s2;

 s1 = produce_a_string();
 s2 = produce_another_string();
 // how can we tell if the strings are the same?

 if (s1 == s2) {
 // does this mean the strings are the same?
 } else {
 // does this mean the strings are different?

 }

The for loop finds the first position at which the two strings differ. The rest of the code
then determines whether the two strings are identical (if so, they must be of the same
length), and if not, it determines which is less than the other. The function returns -1 if
s1 is precedes s2, 0 if they are identical, and 1 if s2 precedes s1.

CS33 Intro to Computer Systems VI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Comparing Strings (2)

int strcmp(char *s1, char *s2) {
 int i;
 for (i=0;
 (s1[i] == s2[i]) && (s1[i] != 0) && (s2[i] != 0);
 i++)
 ; // an empty statement

 if (s1[i] == 0) {
 if (s2[i] == 0) return 0; // strings are identical
 else return -1; // s1 < s2
 } else if (s2[i] == 0) return 1; // s2 < s1
 if (s1[i] < s2[i]) return -1; // s1 < s2
 else return 1; // s2 < s1;
}

CS33 Intro to Computer Systems VI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The String Library

#include <string.h>

char *strcpy(char *dest, char *src);
 // copy src to dest, returns ptr to dest
char *strncpy(char *dest, char *src, int n);
 // copy at most n bytes from src to dest

int strlen(char *s);
 // returns the length of s (not counting the null)
int strcmp(char *s1, char *s2);
 // returns -1, 0, or 1 depending on whether s1 is
 // less than, the same as, or greater than s2

int strncmp(char *s1, char *s2, int n);
 // do the same, but for at most n bytes

These will be useful in upcoming assignments.

CS33 Intro to Computer Systems VI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The String Library (more)

size_t strspn(const char *s, const char *accept);
 // return length of initial portion of s
 // consisting entirely of bytes from accept

size_t strcspn(const char *s, const char *reject);
 // return length of initial portion of s

 // consisting entirely of bytes not from
 // reject

CS33 Intro to Computer Systems VI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

#include <stdio.h>
#include <string.h>

int main() {
 char s1[] = "Hello World!\n";
 char *s2;
 strcpy(s2, s1);
 printf("%s", s2);
 return 0;
}

This code:
a) has syntax problems
b) might seg fault
c) is a great example of well

written C code

Suppose we have a string of characters (perhaps typed into the command line of a shell).
We’d like to parse this string to pull out individual words or "tokens" (to be used as
arguments to a command); these tokens are separated by one or more characters of
white space. Starting with a pointer to this string, we call a function that null-terminates
the first token and returns a pointer to that word (token) and sets rem to point to the
remainder of the string. We call it again to get the second token, etc.

CS33 Intro to Computer Systems VI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parsing a String

a r g 1 a r g 2 \0

string

a r g 1 \0 a r g 2 \0

token rem

a r g 1 \0 a r g 2 \0 \0

token rem

The parse function must keep track of where it left off after each call to it. One way of
doing this is via the use of a static local variable.

VI–27

CS33 Intro to Computer Systems VI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Designing the Parse Function

• It modifies the string being parsed
– puts nulls at the end of each token

• Each call returns a pointer to the next token
– how does it know where it left off the last time?

» how is rem dealt with?

strtok is a standard function in the C strings library. Note that, since the second
argument is declared to be a pointer to a constant, there's a promise that strtok will not
modify what its second argument points to.

CS33 Intro to Computer Systems VI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Design of strtok

• char *strtok(char *string,
 const char *sep)
– if string is non-NULL, strtok returns a pointer to the

first token in string (and keeps track of where the
next token would be)

– if string is NULL, strtok returns a pointer to the token
just after the one returned in the previous call (and
keeps track of where the next token would be), or
returns NULL if there are no more tokens

– tokens are separated by any non-empty combination
of characters in sep

CS33 Intro to Computer Systems VI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using strtok

int main() {
 char line[] = " arg0 arg1 arg2 arg3 ";
 char *str = line;
 char *token;
 while ((token = strtok(str, " \t\n")) != NULL) {
 printf("%s\n", token);
 str = NULL;
 }
 return 0;
}

Output:
arg0
arg1
arg2
arg3

Note the static declaration of rem – this allows strtok to keep track of the remaining
portion of the string.

CS33 Intro to Computer Systems VI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 1

char *strtok(char *string, const char *sep) {
 static char *rem = NULL;
 if (string == NULL) {
 if (rem == NULL) return NULL;
 string = rem;
 }
 int len = strlen(string);
 int slen = strspn(string, sep);
 // initial separators
 if (slen == len) {
 // string is all separators
 rem = NULL;
 return NULL;
 }

VI–31

CS33 Intro to Computer Systems VI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 2

string = &string[slen]; // skip over separators
 len -= slen;
 int tlen = strcspn(string, sep); // length of first token
 if (tlen < len) {
 // token ends before end of string: terminate it with 0
 string[tlen] = '\0';
 rem = &string[tlen+1];
 } else {
 // there's nothing after this token
 rem = NULL;
 }
 return string;
}

Assigning a short to an int will always work, since all possible values of a short
can be represented by an int. The reverse doesn’t always work, since there are
many more values an int can take on than can be represented by a short.

A float can represent an int in the sense that the smallest and largest ints fall
well within the range of the smallest (most negative) and largest floats.
However, floats have fewer significant digits than do ints and thus, when
converting from an int to a float, there may well be a loss of precision.

When converting from a float to an int there will not be any loss of precision,
but large floats and small (most negative) floats cannot be represented by ints.

CS33 Intro to Computer Systems VI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Numeric Conversions

short a;
int b;
float c;

b = a;
a = b;

c = b;
b = c;

/* always works */
/* sometimes works */

/* sort of works */
/* sometimes works */

x’s value will be 2, since the result of the (integer) division of i by j will be 0.

CS33 Intro to Computer Systems VI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (1)

float x, y=2.0;
int i=1, j=2;

x = i/j + y;
 /* what's the value of x? */

Here the values of i and j are converted to float before being assigned to a and
b, thus the value assigned to x is 2.5.

CS33 Intro to Computer Systems VI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (2)

float x, y=2.0;
int i=1, j=2;
float a, b;

a = i;
b = j;
x = a/b + y;

 /* now what's the value of x? */

Here we do the int-to-float conversion explicitly; x’s value will be 2.5.

CS33 Intro to Computer Systems VI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Explicit Conversions: Casts

float x, y=2.0;
int i=1, j=2;

x = (float)i/(float)j + y;
 /* and now what's the value of x? */

“Coercion” is a commonly accepted term for one use of casts. “Intimidation” is
not. The concept is more commonly known as a “sidecast”. Coercion means to
convert something of one datatype to another. Intimidation (or sidecasting)
means to treat an instance one datatype as being another datatype without
doing any conversion of the actual data. Intimidation works only for pointer
datatypes.

CS33 Intro to Computer Systems VI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Purposes of Casts

• Coercion
int i, j;
float a;
a = (float)i/(float)j;

• Intimidation
float x, y;
 // sizeof(float) == 4
swap((int *)&x, (int *)&y);

modify the
value
appropriately

itʼs ok as is
(trust me!)

Note that the type double is a ”double precision” floating-point value
(occupying 8 bytes).

CS33 Intro to Computer Systems VI–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

• Will this work?
double x, y; //sizeof(double) == 8

...
swap((int *)&x, (int *)&y);

a) yes
b) no

