
CS33 Intro to Computer Systems VI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 6

CS33 Intro to Computer Systems VI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Structures Containing Arrays

struct Array {
 int A[6];

} S1, S2;

int A1[6], A2[6];

A1 = A2;

 // not legal: array variables refer to the

 // addresses of the first elements

S1 = S2;

 // legal: structure variables refer to contents

 // of the entire structure

CS33 Intro to Computer Systems VI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Bit More Syntax …

• Constants
const double pi =
3.141592653589793238;

area = pi*r*r; /* legal */
pi = 3.0; /* illegal */

CS33 Intro to Computer Systems VI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Syntax …
const int six = 6;
int nonconstant;
const int *ptr_to_constant;
int *const constant_ptr = &nonconstant;
const int *const constant_ptr_to_constant = &six;

ptr_to_constant = &six;
 // ok

*ptr_to_constant = 7;

 // not ok
*constant_ptr = 7;

 // ok

constant_ptr = &six;

 // not ok

CS33 Intro to Computer Systems VI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

And Still More …

• Array initialization
int FirstSixPrimes[6] = {2, 3, 5, 7, 11, 13};
int SomeMorePrimes[] = {17, 19, 23, 29};
int MoreWithRoomForGrowth[10] = {31, 37};
int MagicSquare[][] = {{2, 7, 6},
 {9, 5, 1},

 {4, 3, 8}};

CS33 Intro to Computer Systems VI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• ASCII
– American Standard Code for Information

Interchange

– works for:
» English
» Swahili

» not much else

– doesn’t work for:
» French
» Spanish
» German
» Korean

» Arabic
» Sanskrit
» Chinese
» pretty much

everything else

CS33 Intro to Computer Systems VI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Characters

• Unicode
– support for the rest of world
– defines a number of encodings
– most common is UTF-8

» variable-length characters
» ASCII is a subset and represented in one byte
» larger character sets require an additional one to

three bytes
– not covered in CS 33

CS33 Intro to Computer Systems VI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

ASCII Character Set

00 10 20 30 40 50 60 70 80 90 100 110 120

 0: \0 \n (2 < F P Z d n x
 1: \v) 3 = G Q [e o y
 2: \f sp * 4 > H R \ f p z
 3: \r ! + 5 ? I S] g q {
 4: " , 6 @ J T ^ h r |
 5: # - 7 A K U _ i s }
 6: $. 8 B L V ` j t ~
 7: \a % / 9 C M W a k u DEL
 8: \b & 0 : D N X b l v
 9: \t ' 1 ; E O Y c m w

CS33 Intro to Computer Systems VI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

chars as Integers

char tolower(char c) {
 if (c >= 'A' && c <= 'Z')
 return c + 'a' – 'A';
 else
 return c;
}

CS33 Intro to Computer Systems VI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s:

Character Strings

char c = 'a';

s t r i n g \0

char *s = "string";

ac:

CS33 Intro to Computer Systems VI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Is there any difference between c1 and
c2 in the following?

char c1 = 'a';
char *c2 = "a";

CS33 Intro to Computer Systems VI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Yes!!

c2:

char c1 = 'a';

a \0

char *c2 = "a";

ac1:

CS33 Intro to Computer Systems VI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What do s1 and s2 refer to after the following is
executed?

 char s1[] = "abcd";
 char *s2 = s1;
 s1[0] = 'z';
 s2[2] = '\0';

CS33 Intro to Computer Systems VI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

s1:

b d \0

s2:

az c\0

CS33 Intro to Computer Systems VI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Weird …

Suppose we did it this way:

 char *s1 = "abcd";
 char *s2 = s1;
 s1[0] = 'z';

 s1[2] = '\0';

% gcc –o char char.c

% ./char

Segmentation fault

CS33 Intro to Computer Systems VI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Copying Strings (1)

char s1[] = "abcd";
 char s2[5];

 s2 = s1; // does this do anything useful?

 // correct code for copying a string
 for (i=0; s1[i] != '\0'; i++)
 s2[i] = s1[i];

 s2[i] = '\0';

 // would it work if s2 were declared:

 char *s2;
 // ?

CS33 Intro to Computer Systems VI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Copying Strings (2)

char s1[] = "abcdefghijklmnopqrstuvwxyz";
 char s2[5];

 for (i=0; s1[i] != '\0'; i++)
 s2[i] = s1[i];

 s2[i] = '\0';

 for (i=0; (i<4) && (s1[i] != '\0'); i++)
 s2[i] = s1[i];

 s2[i] = '\0';

Does this work?

Works!

CS33 Intro to Computer Systems VI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

String Length

char *s1;

 s1 = produce_a_string();

 // how long is the string?

 sizeof(s1); // doesn’t yield the length!!

 for (i=0; s1[i] != '\0'; i++)
 ;

 // number of characters in s1 is i

 // (not including the terminating '\0')

CS33 Intro to Computer Systems VI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Size

int main() {
 char s[] = "1234";

 printf("%d\n", sizeof(s));
 proc(s, 5);

 return 0;
}

void proc(char s1[], int len) {
 char s2[12];
 printf("%d\n", sizeof(s1));

 printf("%d\n", sizeof(s2));
}

$ gcc –o size size.c
$./size
5
8
12
$

CS33 Intro to Computer Systems VI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void proc(char s[9]) {
 printf("%d\n", sizeof(s));

}
What’s printed?
a) 7
b) 8
c) 9
d) 10

CS33 Intro to Computer Systems VI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Comparing Strings (1)

char *s1;
 char *s2;

 s1 = produce_a_string();

 s2 = produce_another_string();

 // how can we tell if the strings are the same?

 if (s1 == s2) {
 // does this mean the strings are the same?

 } else {

 // does this mean the strings are different?

 }

CS33 Intro to Computer Systems VI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Comparing Strings (2)

int strcmp(char *s1, char *s2) {
 int i;

 for (i=0;
 (s1[i] == s2[i]) && (s1[i] != 0) && (s2[i] != 0);

 i++)

 ; // an empty statement

 if (s1[i] == 0) {
 if (s2[i] == 0) return 0; // strings are identical
 else return -1; // s1 < s2
 } else if (s2[i] == 0) return 1; // s2 < s1

 if (s1[i] < s2[i]) return -1; // s1 < s2
 else return 1; // s2 < s1;
}

CS33 Intro to Computer Systems VI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The String Library

#include <string.h>

char *strcpy(char *dest, char *src);
 // copy src to dest, returns ptr to dest

char *strncpy(char *dest, char *src, int n);
 // copy at most n bytes from src to dest

int strlen(char *s);
 // returns the length of s (not counting the null)

int strcmp(char *s1, char *s2);
 // returns -1, 0, or 1 depending on whether s1 is

 // less than, the same as, or greater than s2

int strncmp(char *s1, char *s2, int n);
 // do the same, but for at most n bytes

CS33 Intro to Computer Systems VI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The String Library (more)

size_t strspn(const char *s, const char *accept);
 // return length of initial portion of s

 // consisting entirely of bytes from accept

size_t strcspn(const char *s, const char *reject);
 // return length of initial portion of s

 // consisting entirely of bytes not from

 // reject

CS33 Intro to Computer Systems VI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

#include <stdio.h>
#include <string.h>

int main() {
 char s1[] = "Hello World!\n";
 char *s2;
 strcpy(s2, s1);

 printf("%s", s2);

 return 0;
}

This code:
a) has syntax problems
b) might seg fault
c) is a great example of well

written C code

CS33 Intro to Computer Systems VI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parsing a String

a r g 1 a r g 2 \0

string

a r g 1 \0 a r g 2 \0

token rem

a r g 1 \0 a r g 2 \0 \0

token rem

CS33 Intro to Computer Systems VI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Designing the Parse Function

• It modifies the string being parsed
– puts nulls at the end of each token

• Each call returns a pointer to the next token
– how does it know where it left off the last time?

» how is rem dealt with?

CS33 Intro to Computer Systems VI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Design of strtok

• char *strtok(char *string,
 const char *sep)
– if string is non-NULL, strtok returns a pointer to the

first token in string (and keeps track of where the
next token would be)

– if string is NULL, strtok returns a pointer to the token
just after the one returned in the previous call (and
keeps track of where the next token would be), or
returns NULL if there are no more tokens

– tokens are separated by any non-empty combination
of characters in sep

CS33 Intro to Computer Systems VI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using strtok

int main() {
 char line[] = " arg0 arg1 arg2 arg3 ";
 char *str = line;
 char *token;
 while ((token = strtok(str, " \t\n")) != NULL) {
 printf("%s\n", token);
 str = NULL;
 }

 return 0;
}

Output:
arg0
arg1
arg2
arg3

CS33 Intro to Computer Systems VI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 1

char *strtok(char *string, const char *sep) {
 static char *rem = NULL;
 if (string == NULL) {
 if (rem == NULL) return NULL;
 string = rem;

 }

 int len = strlen(string);
 int slen = strspn(string, sep);
 // initial separators

 if (slen == len) {
 // string is all separators

 rem = NULL;

 return NULL;
 }

CS33 Intro to Computer Systems VI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 2

string = &string[slen]; // skip over separators

 len -= slen;

 int tlen = strcspn(string, sep); // length of first token
 if (tlen < len) {
 // token ends before end of string: terminate it with 0

 string[tlen] = '\0';

 rem = &string[tlen+1];
 } else {
 // there's nothing after this token

 rem = NULL;
 }

 return string;
}

CS33 Intro to Computer Systems VI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Numeric Conversions

short a;
int b;
float c;

b = a;
a = b;
c = b;
b = c;

/* always works */
/* sometimes works */
/* sort of works */
/* sometimes works */

CS33 Intro to Computer Systems VI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (1)

float x, y=2.0;
int i=1, j=2;

x = i/j + y;
 /* what's the value of x? */

CS33 Intro to Computer Systems VI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (2)

float x, y=2.0;
int i=1, j=2;
float a, b;

a = i;

b = j;
x = a/b + y;
 /* now what's the value of x? */

CS33 Intro to Computer Systems VI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Explicit Conversions: Casts

float x, y=2.0;
int i=1, j=2;

x = (float)i/(float)j + y;
 /* and now what's the value of x? */

CS33 Intro to Computer Systems VI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Purposes of Casts

• Coercion
int i, j;
float a;
a = (float)i/(float)j;

• Intimidation
float x, y;
 // sizeof(float) == 4
swap((int *)&x, (int *)&y);

modify the
value
appropriately

itʼs ok as is
(trust me!)

CS33 Intro to Computer Systems VI–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

• Will this work?
double x, y; //sizeof(double) == 8

...
swap((int *)&x, (int *)&y);

a) yes
b) no

