
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition and
are provided from the website of Carnegie-Mellon University, course 15-213, taught by
Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by
CMU” in the notes section of the slides.

CS33 Intro to Computer Systems VII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 7

Suppose we have a string of characters (perhaps typed into the command line of a shell).
We’d like to parse this string to pull out individual words or "tokens" (to be used as
arguments to a command); these tokens are separated by one or more characters of white
space. Starting with a pointer to this string, we call a function that null-terminates the first
token and returns a pointer to that word (token) and sets rem to point to the remainder of
the string. We call it again to get the second token, etc.

CS33 Intro to Computer Systems VII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parsing a String

a r g 1 a r g 2 \0

string

a r g 1 \0 a r g 2 \0

token rem

a r g 1 \0 a r g 2 \0 \0

token rem

The parse function must keep track of where it left off after each call to it. One way of doing
this is via the use of a static local variable.

VI–3

CS33 Intro to Computer Systems VII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Designing the Parse Function

• It modifies the string being parsed
– puts nulls at the end of each token

• Each call returns a pointer to the next token
– how does it know where it left off the last time?

» how is rem dealt with?

strtok is a standard function in the C strings library. Note that, since the second argument
is declared to be a pointer to a constant, there's a promise that strtok will not modify what
its second argument points to.

CS33 Intro to Computer Systems VII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Design of strtok

• char *strtok(char *string,
 const char *sep)
– if string is non-NULL, strtok returns a pointer to the

first token in string (and keeps track of where the
next token would be)

– if string is NULL, strtok returns a pointer to the token
just after the one returned in the previous call, or
NULL if there are no more tokens

– tokens are separated by any non-empty combination
of characters in sep

CS33 Intro to Computer Systems VII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using strtok

int main() {
 char line[] = " arg0 arg1 arg2 arg3 ";
 char *str = line;
 char *token;
 while ((token = strtok(str, " \t\n")) != NULL) {
 printf("%s\n", token);
 str = NULL;
 }
 return 0;
}

Output:
arg0
arg1
arg2
arg3

Note the static declaration of rem – this allows strtok to keep track of the remaining portion
of the string.

CS33 Intro to Computer Systems VII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 1

char *strtok(char *string, const char *sep) {
 static char *rem = NULL;
 if (string == NULL) {
 if (rem == NULL) return NULL;
 string = rem;
 }
 int len = strlen(string);
 int slen = strspn(string, sep);
 // initial separators
 if (slen == len) {
 // string is all separators
 rem = NULL;
 return NULL;
 }

VI–7

CS33 Intro to Computer Systems VII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

strtok Code part 2

string = &string[slen]; // skip over separators
 len -= slen;
 int tlen = strcspn(string, sep); // length of first token
 if (tlen < len) {
 // token ends before end of string: terminate it with 0
 string[tlen] = '\0';
 rem = &string[tlen+1];
 } else {
 // there's nothing after this token
 rem = NULL;
 }
 return string;
}

Assigning a short to an int will always work, since all possible values of a short
can be represented by an int. The reverse doesn’t always work, since there are
many more values an int can take on than can be represented by a short.

A float can represent an int in the sense that the smallest and largest ints fall
well within the range of the smallest (most negative) and largest floats.
However, floats have fewer significant digits than do ints and thus, when
converting from an int to a float, there may well be a loss of precision.

When converting from a float to an int there will not be any loss of precision,
but large floats and small (most negative) floats cannot be represented by ints.

CS33 Intro to Computer Systems VII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Numeric Conversions

short a;

int b;
float c;

b = a;

a = b;
c = b;

b = c;

/* always works */

/* sometimes works */
/* sort of works */

/* sometimes works */

x’s value will be 2, since the result of the (integer) division of i by j will be 0.

CS33 Intro to Computer Systems VII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (1)

float x, y=2.0;

int i=1, j=2;

x = i/j + y;

 /* what's the value of x? */

Here the values of i and j are converted to float before being assigned to a and
b, thus the value assigned to x is 2.5.

CS33 Intro to Computer Systems VII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (2)

float x, y=2.0;

int i=1, j=2;
float a, b;

a = i;

b = j;
x = a/b + y;

 /* now what's the value of x? */

Here we do the int-to-float conversion explicitly; x’s value will be 2.5.

CS33 Intro to Computer Systems VII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Explicit Conversions: Casts

float x, y=2.0;

int i=1, j=2;

x = (float)i/(float)j + y;

 /* and now what's the value of x? */

“Coercion” is a commonly accepted term for one use of casts. “Intimidation” is
not. The concept is more commonly known as a “sidecast”. Coercion means to
convert something of one datatype to another. Intimidation (or sidecasting)
means to treat an instance one datatype as being another datatype without
doing any conversion of the actual data. Intimidation works only for pointer
datatypes.

CS33 Intro to Computer Systems VII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Purposes of Casts

• Coercion
int i, j;

float a;
a = (float)i/(float)j;

• Intimidation
float x, y;

 // sizeof(float) == 4

swap((int *)&x, (int *)&y);

modify the
value
appropriately

itʼs ok as is
(trust me!)

CS33 Intro to Computer Systems VII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

• Will this work?
double x, y; //sizeof(double) == 8

...

swap((int *)&x, (int *)&y);

a) yes
b) no

The call to swap makes sense as long as what x and y point to are the same
size as int's.

The moral is to be careful with casting, particularly intimidation casts, since
they effectively turn off type checking.

CS33 Intro to Computer Systems VII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Caveat Emptor

• Casts tell the C compiler:
“Shut up, I know what I’m doing!”

• Sometimes true
float x, y;
swap((int *)&x, (int *)&y);

• Sometimes false
double x, y;

swap((int *)&x, (int *)&y);

The void * type is an exception to the rule that the type of the target of a
pointer must be known.

CS33 Intro to Computer Systems VII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Nothing, and More …

• void means, literally, nothing:
void NotMuch(void) {

printf("I return nothing\n");
}

• What does void * mean?
– it’s a pointer to anything you feel like

» a generic pointer

Dereferencing a pointer must result in a value with a useful type. “void” is not
a useful type.

CS33 Intro to Computer Systems VII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Rules

• Use with other pointers
int *x;

void *y;
x = y; /* legal */

y = x; /* legal */

• Dereferencing
void *z;
func(*z); /* illegal!*/

func(*(int *)z); /* legal */

Can we write a version of swap that handles a variety of data types?

CS33 Intro to Computer Systems VII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swap, Revisited

void swap(int *i, int *j) {

 int tmp;
 tmp = *j; *j = *i; *i = tmp;

}

/* can we make this generic? */

Note that there is a function in the C library that one may use to copy
arbitrary amounts of data — it’s called memmove. To see its documentation,
use the Linux command “man memmove”.

CS33 Intro to Computer Systems VII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Application: Generic Swap

void gswap (void *p1, void *p2,

 int size) {
 int i;

 for (i=0; i < size; i++) {

 char tmp;

 tmp = ((char *)p1)[i];
 ((char *)p1)[i] = ((char *)p2)[i];

 ((char *)p2)[i] = tmp;

 }

}

CS33 Intro to Computer Systems VII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Generic Swap

short a=1, b=2;

gswap(&a, &b, sizeof(short));

int x=6, y=7;

gswap(&x, &y, sizeof(int));

int A[] = {1, 2, 3}, B[] = {7, 8, 9};

gswap(A, B, sizeof(A));

CS33 Intro to Computer Systems VII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fun with Functions (1)

void ArrayDouble(int A[], int len) {

 int i;
 for (i=0; i<len; i++)

 A[i] = 2*A[i];

}

Here func is declared to be a pointer to a function that takes an int as an
argument and returns an int.

What’s the difference between a pointer to a function and a function? A pointer
to a function is, of course, the address of the function. The function itself is
the code comprising the function. Thus, strictly speaking, if func is the name
assigned to a function, func really represents the address of the function. You
might think that we should invoke the function by saying “*func”, but it’s
understood that this is what we mean when we say “func”. Thus, when one
calls ArrayBop, one supplies the name of the desired function as the third
argument, without prepending “&”.

CS33 Intro to Computer Systems VII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fun with Functions (2)

void ArrayBop(int A[],

 int len,
 int (*func)(int)) {

 int i;

 for (i=0; i<len; i++)

 A[i] = (*func)(A[i]);
}

Here we define another function that takes a single int and returns an int,
and pass it to ArrayBop.

CS33 Intro to Computer Systems VII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fun with Functions (3)

int triple(int arg) {

 return 3*arg;
}

int main() {

 int A[20];
 … /* initialize A */

 ArrayBop(A, 20, triple);

 return 0;

}

CS33 Intro to Computer Systems VII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

typedef

• Allows one to create new names for
existing types
typedef int *IntP_t;

IntP_t x;

–means the same as
int *x;

A standard convention for C is that names of datatypes end with “_t”. Note that
it’s not necessary to give the struct a name in this example (we could have
omitted the “complex” following “struct”). It's also not necessary for the name
of the type to be different from the name of the struct. Though it's a bit
confusing, we could have coded the above as:

typedef struct complex {

 float real;

 float imag;

} complex;

complex i, *ip;

After doing this, "struct complex" and "complex" would mean exactly the same
thing.

CS33 Intro to Computer Systems VII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More typedefs

typedef struct complex {

 float real;
 float imag;

} complex_t;

complex_t i, *ip;

VI–25

CS33 Intro to Computer Systems VII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not a Quiz

• What’s A?

typedef double X_t[N];
X_t A[M];

a) an array of M doubles
b) an MxN array of doubles
c) an NxM array of doubles
d) a syntax error

Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition and
are provided from the website of Carnegie-Mellon University, course 15-213, taught by
Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by
CMU” in the notes section of the slides.

CS33 Intro to Computer Systems VII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation, Part 1

In the diagram, x is an int occupying bytes 134217728, 134217729, 134217730, and
134217731. Its address is 134217728; its size is 4 (bytes).

II–27

CS33 Intro to Computer Systems VII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Representing Data in Memory

• x is a 4-byte integer
– how do the 32 bits represent its

value?
x

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

If a computer word is to be interpreted as an unsigned integer, we can do so as shown in the
slide, where w is the number of bits in the word.

CS33 Intro to Computer Systems VII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unsigned Integers

value =

bw-1 bw-2 bw-3 … b2 b1 b0

!
𝒊"𝟎

𝒘%𝟏

𝒃𝒊 # 𝟐𝒊

We might also want to interpret the contents of a computer word as a signed integer. There
are a few options for how to do this. One straightforward approach is shown in the slide,
where we use the high-order (leftmost) bit as the “sign bit”: 0 means positive and 1 means
negative. However, this has the somewhat weird result that there are two representations of
zero. This further means that the computer would have to have two implementations of
arithmetic instructions: one for signed arithmetic, the other for unsigned arithmetic.

CS33 Intro to Computer Systems VII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Sign-magnitude

value =

• two representations of zero!
• computer must have two sets of instructions

• one for signed arithmetic, one for unsigned

bw-1 bw-2 bw-3 … b2 b1 b0

sign magnitude

In ones' complement, a number is positive if its leftmost bit is zero negative otherwise. We
negate a number by complementing all its bits. Thus, if the leftmost bit is zero, a one in
position i of the remaining bits contributes a value of 2i and a zero contributes nothing. But
if the leftmost bit is one, a zero in position i contributes a value of -2i and a one contributes
nothing.

Note that the most-significant bit serves as the sign bit. But, as with sign-magnitude, the
computer would need two sets of instructions: one for signed arithmetic and one for
unsigned.

CS33 Intro to Computer Systems VII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Integers
• Onesʼ complement

– negate a number by forming its bit-wise
complement

» e.g., (-1)∙01101011 = 10010100

bw-1 = 0 Þ non-negative number

value =

bw-1 = 1 Þ negative number

 value =

two zeros!

There’s only one zero!

Two’s complement is used on pretty much all of today’s computers to represent signed
integers.

Note that the high-order (most-significant) bit represents -2w-1. All the other bits represent
positive numbers.

CS33 Intro to Computer Systems VII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Two’s complement
bw-1 = 0 Þ non-negative number

bw-1 = 1 Þ negative number

value =

value =

one zero!

CS33 Intro to Computer Systems VII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

• w = 4
0000: 0
0001: 1
0010: 2
0011: 3
0100: 4
0101: 5
0110: 6
0111: 7

1000: -8
1001: -7
1010: -6
1011: -5
1100: -4
1101: -3
1110: -2
1111: -1

To negate a two’s-complement number, simply complement each of its bits, then add one to
the result. We show why this works in the next slide.

CS33 Intro to Computer Systems VII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement

– how to compute –value?
(~value)+1

value = −bw−12
w−1+ bi2

i

i=0

w−2

∑

If we add to the two’s complement representation of a w-bit number the result of adding one
to its bitwise complement, we get a w+1-bit number whose low-order w bits are zeroes and
whose high-order bit is one. However, since we’re constrained to only w bits, the result is a
w-bit value of all zeroes, plus an overflow. If we ignore the overflow, the result is zero.

CS33 Intro to Computer Systems VII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement (continued)

 value + (~value + 1)

 = (value + ~value) + 1

 = (2w−1) + 1

 = 2w

0 0 0 … 0 0 0

w

1=

CS33 Intro to Computer Systems VII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

• We have a computer with 4-bit words that
uses two’s complement to represent signed
integers. What is the result of subtracting
0010 (2) from 0001 (1)?
a) 1110
b) 1001
c) 0111
d) 1111

Why the signed integer types use the arithmetic right shift will be clear by the end of the
next lecture.

CS33 Intro to Computer Systems VII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C

• char, short, int, and long
– signed integer types
– right shift (>>) is arithmetic

• unsigned char, unsigned short, unsigned int,
unsigned long
– unsigned integer types
– right shift (>>) is logical

Supplied by CMU.

CS33 Intro to Computer Systems VII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Numeric Ranges
• Unsigned Values

– UMin = 0
000…0

– UMax = 2w – 1
111…1

• Two’s Complement Values
– TMin = –2w–1

100…0
– TMax = 2w–1 – 1

011…1
• Other Values

– Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Supplied by CMU.

CS33 Intro to Computer Systems VII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Values for Different Word Sizes

• Observations
|TMin | = TMax + 1

» Asymmetric range
UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

• C Programming
• #include <limits.h>
• declares constants, e.g.,

• ULONG_MAX
• LONG_MAX
• LONG_MIN

• values platform-specific

CS33 Intro to Computer Systems VII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

• What is –TMin (assuming two’s complement
signed integers)?
a) TMin
b) TMax
c) 0
d) 1

