
Many of the slides in this lecture are either from or adapted from slides provided by the 
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition 
and are provided from the website of Carnegie-Mellon University, course 15-213, taught 
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems VIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 2)



Why the signed integer types use the arithmetic right shift will be clear by the end of the 
next lecture.

CS33 Intro to Computer Systems VIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C

• char, short, int, and long
– signed integer types
– right shift (>>) is arithmetic

• unsigned char, unsigned short, unsigned int, 
unsigned long

– unsigned integer types
– right shift (>>) is logical



Supplied by CMU.

CS33 Intro to Computer Systems VIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Numeric Ranges
• Unsigned Values

– UMin = 0
000…0

– UMax =  2w – 1
111…1

• Two’s Complement Values
– TMin =  –2w–1

100…0
– TMax =  2w–1 – 1

011…1
• Other Values

– Minus 1
111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16



Supplied by CMU.

CS33 Intro to Computer Systems VIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Values for Different Word Sizes

• Observations
|TMin | = TMax + 1

» Asymmetric range
UMax = 2 * TMax + 1 

 

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

• C Programming
• #include <limits.h>
• declares constants, e.g.,

• ULONG_MAX
• LONG_MAX
• LONG_MIN

• values platform-specific



III–5

CS33 Intro to Computer Systems VIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

• What is –TMin (assuming two’s complement 
signed integers)?
a) TMin
b) TMax
c) 0
d) 1



Unsigned computer arithmetic is performed modulo 2 to the power of the computer’s 
word size. The outer ring of the figure demonstrates arithmetic modulo 24. To see the 
result, for example, of adding 3 to 2, start at 2 and go around the ring three units in the 
clockwise direction. If we add 5 to 14, we start at 14 and move 5 units clockwise, to 3. 
Similarly, to subtract 3 from 1, we start at one and move three units counterclockwise to 
14.

What about two’s-complement computer arithmetic? We know that the values encoded 
in a 4-bit computer word range from -8 to 7. How do we arrange them in the ring? As 
shown in the second ring, it makes sense for the non-negative numbers to be in the 
same positions as the corresponding unsigned values. It clearly makes sense for the 
integer coming just before 0 to be -1, the integer just before -1 to be -2, etc. Thus, since 
we have a ring, the integer following 7 is -8. Now we can see how arithmetic works for 
two’s-complement numbers. Adding 3 to 2 works just as it does for unsigned numbers. 
Subtracting 3 from 1 results in -2. But adding 3 to 6 results in -7; and adding 5 to -2 
results in 3.

The innermost ring shows the bit encodings for the unsigned and two’s-complement 
values. The point of all this is that, with only one implementation of arithmetic, we can 
handle both unsigned and two’s-complement values. Thus, adding unsigned 5 and 9 is 
equivalent to adding two’s-complement 5 and -7. The result will 1110, which, if 
interpreted as an unsigned value is 14, but if interpreted as a two’s-complement value is 
-2.

CS33 Intro to Computer Systems VIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

4-Bit Computer Arithmetic
0

0 1
1

22

33
44

55

6
6

7
7

8
-89

-7

10
-6

11 -5
12 -4

13 -3

14
-2

15
-1

0000 0001

0010
0011

0100
0101

0110
011110001001

10
10

10
11

11
00

11
01

111
0

1111



Supplied by CMU.

Note that the kind of casting done here is what we called "intimidation" in the 
previous lecture: no actual conversion takes place, but the value is 
reinterpreted according to the cast.

CS33 Intro to Computer Systems VIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C
• Constants

– by default are considered to be signed integers
– unsigned if have “U” as suffix

0U, 4294967259U

• Casting
– explicit casting between signed & unsigned

int tx, ty;
unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;
uy = (unsigned int) ty;

– implicit casting also occurs via assignments and function calls
tx = ux;
uy = ty;



THIS APPLIES TO COMPARISONS ONLY, NOT TO ASSIGNMENTS!!!!!!!!

Note that, for the last pair of constants, the second is one greater than TMAX. 
Thus, when it’s treated as a signed value, it’s actually negative.

Supplied by CMU.

CS33 Intro to Computer Systems VIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

• Expression evaluation
– if there is a mix of unsigned and signed in single expression, 

signed values implicitly cast to unsigned
– including comparison operations <, >, ==, <=, >=
– examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

Casting Surprises

Constant1 Constant2 Relation Evaluation
0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int)2147483648U > signed



CS33 Intro to Computer Systems VIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

What is the value of
 (unsigned long)-1 - (long)ULONG_MAX
???

a) 0
b) -1
c) 1
d) ULONG_MAX 



Supplied by CMU.

CS33 Intro to Computer Systems VIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sign Extension
• Task:

– given w-bit signed integer x
– convert it to w+k-bit integer with same value

• Rule:
– make k copies of sign bit:
– X ¢ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB • • •X 

X ¢ • • • • • •

• • •

w

wk



Supplied by CMU.

CS33 Intro to Computer Systems VIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sign Extension Example

• Converting from smaller to larger integer data type
– C automatically performs sign extension

short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011



Sign extension clearly works for positive and zero values (where the sign bit is zero). But 
does it work for negative values? The first line of the slide shows the computation of the 
value of a w-bit item with a sign bit of one (i.e., it’s negative). The next two lines show 
what happens if we extend this to a w+1-bit item, extending the sign bit. What had been 
the sign bit becomes one of the value bits, and its contribution to the value is now 
positive rather than negative. But this is compensated by the new sign bit, whose 
contribution is a negative value, twice as large as the original sign bit. Thus, the net 
effect is for there to be no change in the value.

We do this again, extending to a w+2-bit item, and again, the resulting value is the same 
as what we started with.

CS33 Intro to Computer Systems VIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Does it Work?
valw = − 2w−1 + bi ⋅2

i

i=0

w−2
∑

valw+1 = − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

valw+2 = − 2w+1 + 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑



Supplied by CMU.

Note that to represent the true product of two arbitrary w-bit values, we need 2w 
bits.

CS33 Intro to Computer Systems VIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unsigned Multiplication

• Standard multiplication function
– ignores high order w bits

• Implements modular arithmetic
UMultw(u , v) = u   · v  mod 2w

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •



Supplied by CMU.

Why is it that the "true product" is different from that of unsigned multiplication? 
Consider what the true product should be if the multiplier is -1 and the 
multiplicand is 1. The multiplier is a w-bit word of all ones; the multiplicand is a 
w-bit word of all zeroes except for the least-significant bit, which is 1. The high-
order w bits of the true product should be all ones (since it's negative), but with 
unsigned multiplication they'd be all zeroes. However, since we're ignoring the 
high-order w bits, this doesn't matter.

Note that the sign of the result depends on the most-significant bit of the w-bit 
result, which could have no relation to the signs of the multiplier or the 
multiplicand.

It may be particularly important to have 64-bit results when multiplying arbitrary 
32-bit signed integers.

CS33 Intro to Computer Systems VIII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Multiplication

• Standard multiplication function
– ignores high order w bits
– some of which are different from those of 

unsigned multiplication
– lower bits are the same

» but most-significant bit of TMULT 
determines sign

• • •
• • •

u
v*

• • •u * v

• • •
True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •



Supplied by CMU.

CS33 Intro to Computer Systems VIII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Power-of-2 Multiply with Shift
• Operation

– u << k gives u * 2k

– both signed and unsigned

• Examples
u << 3 == u * 8
u << 5 - u << 3 == u * 24

– most machines shift and add faster than multiply
» compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u * 2ktrue product: w+k  bits

operands: w bits

discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••



Supplied by CMU.

CS33 Intro to Computer Systems VIII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unsigned Power-of-2 Divide with Shift
• Quotient of unsigned and power of 2

– u >> k gives  ë u / 2k û
– uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••
u
2k/

u / 2kdivision: 

operands: •••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••result:

.

binary point

0

0 0 0•••0



Supplied by CMU.

Recall that with two's-complement, all the bits other than the most-significant 
represent positive values. Thus, we are shifting off (to the right) bits that 
should be adding a positive value to the number, but now are lost. Thus, if any 
of these bits are one, after shifting the resulting value will be less than it 
should be (i.e., more negative).

CS33 Intro to Computer Systems VIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signed Power-of-2 Divide with Shift
• Quotient of signed and power of 2

– x >> k gives  ë x / 2k û
– uses arithmetic shift
– rounds wrong direction when x < 0

0 0 1 0 0 0•••
x
2k/

x / 2kdivision: 

operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••result:

.

binary point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 
y >> 1 -7606.5 -7607 E2 49  11100010 01001001 
y >> 4 -950.8125 -951 FC 49 11111100 01001001 
y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
 



Supplied by CMU.

If the least-significant k bits are all zeroes, then adding in the bias and shifting 
right by k bits eliminates any effect of adding the bias.

CS33 Intro to Computer Systems VIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide
• Quotient of negative number by power of 2

– want  é x / 2k ù    (round toward 0)
– compute as  ë (x+2k-1)/ 2k û

» in C: (x + (1<<k)-1) >> k
» biases dividend toward 0

Case 1: no rounding

divisor: 

dividend:

0 0 1 0 0 0•••

x

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect



Supplied by CMU.

If any of the least-significant k bits are one, then adding the bias to them 
causes a carry of one to the bits to their left. Thus, after shifting, the number 
that's represented by the remaining bits is one greater (less negative) than it 
would have been if the bias had not been added.

CS33 Intro to Computer Systems VIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide (Cont.)

divisor: 

dividend:

Case 2: rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

incremented by 1

incremented by 1



Supplied by CMU.

Note that “sizeof” returns an unsigned value. (Recall that, when mixing signed 
and unsigned items in an expression, the result will be unsigned.)

CS33 Intro to Computer Systems VIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Should I Use Unsigned?
• Don’t use just because number nonnegative

– easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];

– can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
  . . .

• Do use when using bits to represent sets
– logical right shift, no sign extension



III–21

CS33 Intro to Computer Systems VIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Word Size

• (Mostly) obsolete term
– old computers had items of one size: the word size

• Now used to express the number of bits 
necessary to hold an address

– 16 bits (really old computers)
– 32 bits (old computers)
– 64 bits (most current computers)



Read “Gulliver’s Travels” by Jonathan Swift for an explanation of the egg.

CS33 Intro to Computer Systems VIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian



Here we have a four-byte integer one. In the big-endian representation, the address of 
the integer is the address of the byte containing its most-significant bits (the big end), 
while in the little-endian representation, the address of the integer is the address of the 
byte containing its least-significant bits (the little end). Suppose we pass a pointer to 
this integer to some function. However, in a type-mismatch, the function assumes that 
what is passed it is a two-byte integer. On a big-endian system, it would think it was 
passed a zero, but on a little-endian system, it would think it was passed a one.

This is not an argument in favor of either approach, but simply an observation that 
behaviors could be different.

CS33 Intro to Computer Systems VIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Byte Ordering (2)

00 00 00 01

Big Endian

Little Endian



III–24

CS33 Intro to Computer Systems VIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

int main() {
  long x=1;
  func((int *)&x);
  return 0;
}

void func(int *arg) {
  printf("%d\n", *arg);
}

What value is printed 
on a big-endian 64-bit 
computer?

a) 1
b) 0
c) 232

d) 232-1



This code prints out the value of x, one byte at a time, starting with the byte at the 
lowest address (little end). On x86-based and m1-based (and presumably m2-based) 
computers, it will print:

00010203

which means that the address of an int is the address of the byte containing its least 
significant digits (little endian).

How does printf know that xarray[i] is an unsigned char (and thus one byte long) 
rather than an int? It turns out that printf is actually a macro (created using #define) 
that creates additional arguments that give the size (using sizeof) of its second and 
subsequent arguments. Thus, in this example, printf calls another function, passing it 
“%02x”, xarray[i], and sizeof(xarray[i]). The “%02x” format code says to convert the 
argument to hexadecimal notation, print it in a field that’s two characters wide, and 
include leading 0s.

III–25

CS33 Intro to Computer Systems VIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Byte Ordering Do We Use?

int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
            printf("%02x", xarray[i]);
    }

    printf("\n");
    return 0;
}

Possible results:

00010203
03020100



Supplied by CMU.

CS33 Intro to Computer Systems VIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?



Supplied by CMU.

CS33 Intro to Computer Systems VIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •



Supplied by CMU.

CS33 Intro to Computer Systems VIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k

» other rational numbers have repeating bit 
representations

– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits

» limited range of numbers (very small values? very 
large?)



Supplied by CMU.

IEEE is the Institute for Electrical and Electronics Engineers (pronounced "eye triple e").

CS33 Intro to Computer Systems VIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating 

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware

» numerical analysts predominated over hardware 
designers in defining standard



Supplied by CMU.

CS33 Intro to Computer Systems VIII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

• Numerical Form: 
   (–1)s M  2E

– sign bit s determines whether number is negative or 
positive

– significand M normally a fractional value in range 
[1.0,2.0)

– exponent E weights value by power of two
• Encoding

– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac



Supplied by CMU.

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to 
either 32 or 64 as required.

CS33 Intro to Computer Systems VIII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits



Supplied by CMU.

CS33 Intro to Computer Systems VIII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E  =  Exp – Bias
– exp: unsigned value exp 
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M  =  1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”



Supplied by CMU.

CS33 Intro to Computer Systems VIII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310  = 111011011011012  

                     = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac =   110110110110100000000002

• Exponent
E  = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000 
s exp frac



Supplied by CMU.

CS33 Intro to Computer Systems VIII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:

M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
–  exp = 000…0, frac = 000…0

» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced



Supplied by CMU.

CS33 Intro to Computer Systems VIII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥,  1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0



Supplied by CMU.

CS33 Intro to Computer Systems VIII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN



Supplied by CMU.

CS33 Intro to Computer Systems VIII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits



Supplied by CMU.

CS33 Intro to Computer Systems VIII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp  frac E Value 

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf



Supplied by CMU.

CS33 Intro to Computer Systems VIII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser 
toward zero. 8 values

s exp frac

1 3-bits 2-bits



Supplied by CMU.

CS33 Intro to Computer Systems VIII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity



CS33 Intro to Computer Systems VIII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above



We're assuming here the six-bit floating-point format.

III–42

CS33 Intro to Computer Systems VIII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑



III–43

CS33 Intro to Computer Systems VIII–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the 
floating-point number whose value is closest 
to R

• What if itʼs midway between two values?
– there are rounding rules that we won’t cover!



Note that we still have to discuss rounding so as to accommodate values that are 
equidistant from A and B or from B and C.

A special case is 0. Positive 0 represents a range of values that are greater than or equal 
to 0. Negative 0 represents a range of values that are less than or equal to zero.

III–44

CS33 Intro to Computer Systems VIII–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point 
values

– e.g., 010001, 010010, and 010011
• B represents all real numbers from midway 

between A and B through midway between B 
and C

A B C

Real numbers 
represented by B



III–45

CS33 Intro to Computer Systems VIII–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit 

significand, the range from 2E up to 2E+1 is divided 
into 2S equi-spaced floating-point values

» thus each floating-point value represents 1/2S of the 
range of values with that exponent

» all bits of the signifcand are important
» we say that there are S significant bits – for 

reasonably large S, each floating-point value covers 
a rather small part of the range

• high accuracy
• for S=23 (32-bit float), accurate to one in 223 

(.0000119% accuracy)



Recall that the bias for the exponent of 8-bit IEEE FP is 7, thus for unnormalized 
numbers the actual exponent is -6 (-bias+1). The significand has an implied leading 0, 
thus 0 0000 001 represents 2-6 * 2-3.

With 8-bit IEEE FP. the value 0 0000 01 is interpreted as 2-9, But the number 
represented could be 50% or 50% more.

III–46

CS33 Intro to Computer Systems VIII–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt 

important
– in 8-bit floating point, 0 0000 001 represents 2-9 

» it is the only value with that exponent: 1 significant 
bit (either 2-9 or 0)

– 0 0000 010 represents 2-8
0 0000 011 represents 1.5*2-8

» only two values with exponent -8: 2 significant bits 
(encoding those two values, as well as 2-9 and 0)

– fewer significant bits mean less accuracy
– 0 0000 001 represents a range of values from .5*2-9 

to 1.5*2-9
– 50% accuracy



It’s important to remember that a floating-point value is not a single number, but a 
range of numbers.

III–47

CS33 Intro to Computer Systems VIII–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers, 

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small 
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small 

negative number should be negative

+¥ /−0 = −¥


