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CS 33
Data Representation (Part 2)
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Signed vs. Unsigned in C

• char, short, int, and long
– signed integer types
– right shift (>>) is arithmetic

• unsigned char, unsigned short, unsigned int, 
unsigned long

– unsigned integer types
– right shift (>>) is logical
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Numeric Ranges
• Unsigned Values

– UMin = 0
000…0

– UMax =  2w – 1
111…1

• Two’s Complement Values
– TMin =  –2w–1

100…0
– TMax =  2w–1 – 1

011…1
• Other Values

– Minus 1
111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16
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Values for Different Word Sizes

• Observations
|TMin | = TMax + 1

» Asymmetric range
UMax = 2 * TMax + 1 

 

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

• C Programming
• #include <limits.h>
• declares constants, e.g.,

• ULONG_MAX
• LONG_MAX
• LONG_MIN

• values platform-specific
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Quiz 1

• What is –TMin (assuming two’s complement 
signed integers)?
a) TMin
b) TMax
c) 0
d) 1
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Signed vs. Unsigned in C
• Constants

– by default are considered to be signed integers
– unsigned if have “U” as suffix

0U, 4294967259U

• Casting
– explicit casting between signed & unsigned

int tx, ty;
unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;
uy = (unsigned int) ty;

– implicit casting also occurs via assignments and function calls
tx = ux;

uy = ty;
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• Expression evaluation
– if there is a mix of unsigned and signed in single expression, 

signed values implicitly cast to unsigned
– including comparison operations <, >, ==, <=, >=
– examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

Casting Surprises

Constant1 Constant2 Relation Evaluation
0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int)2147483648U > signed
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Quiz 2

What is the value of
 (unsigned long)-1 - (long)ULONG_MAX
???

a) 0
b) -1
c) 1
d) ULONG_MAX 
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Sign Extension
• Task:

– given w-bit signed integer x
– convert it to w+k-bit integer with same value

• Rule:
– make k copies of sign bit:
– X ¢ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB • • •X 

X ¢ • • • • • •

• • •

w

wk
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Sign Extension Example

• Converting from smaller to larger integer data type
– C automatically performs sign extension

short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Does it Work?
valw = − 2w−1 + bi ⋅2

i

i=0

w−2
∑

valw+1 = − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

valw+2 = − 2w+1 + 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑
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Unsigned Multiplication

• Standard multiplication function
– ignores high order w bits

• Implements modular arithmetic
UMultw(u , v) = u   · v  mod 2w

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •
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Signed Multiplication

• Standard multiplication function
– ignores high order w bits
– some of which are different from those of 

unsigned multiplication
– lower bits are the same

» but most-significant bit of TMULT 
determines sign

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •
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Power-of-2 Multiply with Shift
• Operation

– u << k gives u * 2k

– both signed and unsigned

• Examples
u << 3 == u * 8

u << 5 - u << 3 == u * 24

– most machines shift and add faster than multiply
» compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u * 2ktrue product: w+k  bits

operands: w bits

discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Unsigned Power-of-2 Divide with Shift
• Quotient of unsigned and power of 2

– u >> k gives  ë u / 2k û
– uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••
u
2k/

u / 2kdivision: 

operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••result:

.

binary point

0

0 0 0•••0
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Signed Power-of-2 Divide with Shift
• Quotient of signed and power of 2

– x >> k gives  ë x / 2k û
– uses arithmetic shift
– rounds wrong direction when x < 0

0 0 1 0 0 0•••
x
2k/

x / 2kdivision: 

operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••result:

.

binary point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 
y >> 1 -7606.5 -7607 E2 49  11100010 01001001 
y >> 4 -950.8125 -951 FC 49 11111100 01001001 
y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide
• Quotient of negative number by power of 2

– want  é x / 2k ù    (round toward 0)
– compute as  ë (x+2k-1)/ 2k û

» in C: (x + (1<<k)-1) >> k
» biases dividend toward 0

Case 1: no rounding

divisor: 

dividend:

0 0 1 0 0 0•••

x

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

divisor: 

dividend:

Case 2: rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

incremented by 1

incremented by 1
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Why Should I Use Unsigned?
• Don’t use just because number nonnegative

– easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];

– can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
  . . .

• Do use when using bits to represent sets
– logical right shift, no sign extension
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Word Size

• (Mostly) obsolete term
– old computers had items of one size: the word size

• Now used to express the number of bits 
necessary to hold an address

– 16 bits (really old computers)
– 32 bits (old computers)
– 64 bits (most current computers)
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Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian
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Byte Ordering (2)

00 00 00 01

Big Endian

Little Endian
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Quiz 3

int main() {
  long x=1;
  func((int *)&x);
  return 0;

}

void func(int *arg) {
  printf("%d\n", *arg);

}

What value is printed 
on a big-endian 64-bit 
computer?

a) 1
b) 0
c) 232

d) 232-1
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Which Byte Ordering Do We Use?

int main() {
    unsigned int x = 0x03020100;

    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
            printf("%02x", xarray[i]);

    }

    printf("\n");

    return 0;
}

Possible results:

00010203
03020100
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Fractional binary numbers

• What is 1011.1012?
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2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •
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Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k

» other rational numbers have repeating bit 
representations

– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits

» limited range of numbers (very small values? very 
large?)
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IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating 

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware

» numerical analysts predominated over hardware 
designers in defining standard
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• Numerical Form: 
   (–1)s M  2E

– sign bit s determines whether number is negative or 
positive

– significand M normally a fractional value in range 
[1.0,2.0)

– exponent E weights value by power of two
• Encoding

– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac
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Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits
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“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E  =  Exp – Bias
– exp: unsigned value exp 
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M  =  1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”



CS33 Intro to Computer Systems VIII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310  = 111011011011012  

                     = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac =   110110110110100000000002

• Exponent
E  = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000 
s exp frac
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Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:

M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
–  exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced
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Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥,  1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0
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Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN
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Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp  frac E Value 

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser 
toward zero. 8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Quiz 4

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above
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Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑
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Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the 
floating-point number whose value is closest 
to R

• What if itʼs midway between two values?
– there are rounding rules that we won’t cover!
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Floats are Sets of Values

• If A, B, and C are successive floating-point 
values

– e.g., 010001, 010010, and 010011
• B represents all real numbers from midway 

between A and B through midway between B 
and C

A B C

Real numbers 
represented by B
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Significance

• Normalized numbers
– for a particular exponent value E and an S-bit 

significand, the range from 2E up to 2E+1 is divided 
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the 

range of values with that exponent
» all bits of the signifcand are important
» we say that there are S significant bits – for 

reasonably large S, each floating-point value covers 
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223 

(.0000119% accuracy)
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Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt 

important
– in 8-bit floating point, 0 0000 001 represents 2-9 

» it is the only value with that exponent: 1 significant 
bit (either 2-9 or 0)

– 0 0000 010 represents 2-8
0 0000 011 represents 1.5*2-8
» only two values with exponent -8: 2 significant bits 

(encoding those two values, as well as 2-9 and 0)
– fewer significant bits mean less accuracy
– 0 0000 001 represents a range of values from .5*2-9 

to 1.5*2-9
– 50% accuracy
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+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers, 

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small 
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small 

negative number should be negative

+¥ /−0 = −¥


