
Many of the slides in this lecture are either from or adapted from slides provided by the 
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition 
and are provided from the website of Carnegie-Mellon University, course 15-213, taught 
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems IX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 3)



Read “Gulliver’s Travels” by Jonathan Swift for an explanation of the egg.

CS33 Intro to Computer Systems IX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian



This code prints out the value of x, one byte at a time, starting with the byte at the 
lowest address (little end). On x86-based and m1-based (and presumably m2-based) 
computers, it will print:

00010203

which means that the address of an int is the address of the byte containing its least 
significant digits (little endian).

How does printf know that xarray[i] is an unsigned char (and thus one byte long) 
rather than an int? It turns out that printf is actually a macro (created using #define) 
that creates additional arguments that give the size (using sizeof) of its second and 
subsequent arguments. Thus, in this example, printf calls another function, passing it 
“%02x”, xarray[i], and sizeof(xarray[i]). The “%02x” format code says to convert the 
argument to hexadecimal notation, print it in a field that’s two characters wide, and 
include leading 0s.

III–3

CS33 Intro to Computer Systems IX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Which Byte Ordering Do We Use?

int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
            printf("%02x", xarray[i]);
    }

    printf("\n");
    return 0;
}

Possible results:

00010203
03020100



Supplied by CMU.

CS33 Intro to Computer Systems IX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?



Supplied by CMU.

CS33 Intro to Computer Systems IX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •



Supplied by CMU.

CS33 Intro to Computer Systems IX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k

» other rational numbers have repeating bit 
representations

– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits
» limited range of numbers (very small values? very 

large?)



Supplied by CMU.

IEEE is the Institute for Electrical and Electronics Engineers (pronounced "eye triple e").

CS33 Intro to Computer Systems IX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating 

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware
» numerical analysts predominated over hardware 

designers in defining standard



Supplied by CMU.

CS33 Intro to Computer Systems IX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

• Numerical Form: 
   (–1)s M  2E

– sign bit s determines whether number is negative or 
positive

– significand M normally a fractional value in range 
[1.0,2.0)

– exponent E weights value by power of two
• Encoding
– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac



Supplied by CMU.

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to 
either 32 or 64 as required.

CS33 Intro to Computer Systems IX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits



Supplied by CMU.

CS33 Intro to Computer Systems IX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E  =  Exp – Bias
– exp: unsigned value exp 
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M  =  1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”



Supplied by CMU.

CS33 Intro to Computer Systems IX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310  = 111011011011012  

                     = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac =   110110110110100000000002

• Exponent
E  = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000 
s exp frac



Supplied by CMU.

CS33 Intro to Computer Systems IX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:
M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
–  exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced



Supplied by CMU.

CS33 Intro to Computer Systems IX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥,  1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0



Supplied by CMU.

CS33 Intro to Computer Systems IX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN



Supplied by CMU.

CS33 Intro to Computer Systems IX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits



Supplied by CMU.

CS33 Intro to Computer Systems IX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp  frac E Value 

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf



Supplied by CMU.

CS33 Intro to Computer Systems IX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser 
toward zero. 8 values

s exp frac

1 3-bits 2-bits



Supplied by CMU.

CS33 Intro to Computer Systems IX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity



CS33 Intro to Computer Systems IX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above



We're assuming here the six-bit floating-point format.

III–20

CS33 Intro to Computer Systems IX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑



CS33 Intro to Computer Systems IX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the 
floating-point number whose value is closest 
to R

• What if itʼs midway between two values?
– rounding rules determine outcome



A special case is 0. Positive 0 represents a range of values that are greater than or equal 
to 0. Negative 0 represents a range of values that are less than or equal to zero.

III–22

CS33 Intro to Computer Systems IX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point 
values

– e.g., 010001, 010010, and 010011
• B represents all real numbers from midway 

between A and B through midway between B 
and C

A B C

Real numbers 
represented by B



III–23

CS33 Intro to Computer Systems IX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit 

significand, the range from 2E up to 2E+1 is divided 
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the 

range of values with that exponent
» all bits of the significand are important
» we say that there are S significant bits – for 

reasonably large S, each floating-point value covers 
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223 

(.0000119% accuracy)



Recall that the bias for the exponent of 8-bit IEEE FP is 7, thus for unnormalized 
numbers the actual exponent is -6 (-bias+1). The significand has an implied leading 0, 
thus 0 0000 001 represents 2-6 * 2-3.

With 8-bit IEEE FP. the value 0 0000 01 is interpreted as 2-9, but the number 
represented could be 50% less or 50% more. 

III–24

CS33 Intro to Computer Systems IX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt 

important
– in 8-bit floating point, 0 0000 001 represents 2-9 

» it is the only value with that exponent: 1 significant 
bit (either 2-9 or 0)

» 50% accuracy
– 0 0000 010 represents 2-8

0 0000 011 represents 1.5*2-8

» only two values with exponent -8: 2 significant bits 
(encoding those two values, as well as 2-9 and 0)

» 25% accuracy
– fewer significant bits means less accuracy
– 0 0000 001 represents a range of values from .5*2-9 

to 1.5*2-9



It’s important to remember that a floating-point value is not a single number, but a 
range of numbers.

III–25

CS33 Intro to Computer Systems IX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers, 

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small 
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small 

negative number should be negative

+¥ /−0 = −¥



We begin our discussion of machine programming by covering some of the general 
principles involved. We look at a generic "machine language" that is similar, but not 
identical, to that used on Intel processors. After this brief introduction, we focus on the 
machine language used by Intel processors.

CS33 Intro to Computer Systems IX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Machine Programming



CS33 Intro to Computer Systems IX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Machine Model

Processor
(aka CPU)

Memory
(aka RAM)

instructions 
and data

data



Generally, we think of their being two sorts of memory: that containing instructions and 
that containing data. Programs, in general, don’t modify their own instructions on the 
fly. In reality, there’s only one sort of memory, which holds everything. However, we 
arrange so that memory holding instructions cannot be modified and that, usually, 
memory holding data cannot be executed as instructions.

Of course, programs such as compilers and linkers produce executable code as data, 
but they don’t directly execute it.

CS33 Intro to Computer Systems IX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory

Instructions

Data

Instructions
are Dataor



CS33 Intro to Computer Systems IX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processor: Some Details

Instruction pointer

Condition codes

Execution
engine



CS33 Intro to Computer Systems IX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processor: Basic Operation

while (forever) {
  fetch instruction IP points at
  decode instruction
  fetch operands
  execute
  store results
  update IP and condition code
}



CS33 Intro to Computer Systems IX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Instructions ...

Op code Operand1 Operand2 ...



CS33 Intro to Computer Systems IX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Operands

• Form
– immediate vs. reference

» value vs. address

• How many?
– 3

» add a,b,c
• c = a + b

– 2
» add a,b

• b += a



CS33 Intro to Computer Systems IX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Operands (continued)

• Accumulator
– special memory in the processor

» known as a register
» fast access

– allows single-operand instructions
» add a

• acc += a
» add b

• acc += b



Note we’re using the accumulator in two-operand instructions. The “%” makes it clear 
that “acc” is a register. The “$” indicates that what follows is an immediate operand; i.e., 
it’s a value to be used as is, rather than as an address or a register.

CS33 Intro to Computer Systems IX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

From C to Assembler ...

a = (b + c) * d;

mov   b,%acc
add   c,%acc
mul   d,%acc
mov   %acc,a

if (a<b)
   c = 1;
else
   d = 1;

   cmp   a,b

   jge   .L1
   mov   $1,c
   jmp   .L2
.L1
   mov   $1,d

.L2

immediate 
operand

immediate 
operand



We have one set of arithmetic instructions that work with both unsigned and signed 
(two’s complement) interpretations of the bit values in a word.

The overflow flag is set when the result, interpreted as a two’s-complement value should 
be positive, but won’t fit in the word and thus becomes a negative number, or should be 
negative, but won’t fit in the word and thus becomes a positive  number.

The carry flag is set when computing the result, interpreted as an unsigned value, 
requires a borrow out of the most-significant bit (i.e., computing b-a when a is greater 
than b), or when it results in an overflow (e.g., for 32-bit unsigned integers, when the 
result should be greater than or equal to 232 (but can't fit in a 32-bit word).

CS33 Intro to Computer Systems IX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes
• Set of flags giving status of most recent 

operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign bit is set
– overflow flag

» for signed arithmetic interpretation
– carry flag (generated by carry or borrow out of most-

significant bit)
» for unsigned arithmetic interpretation

• Set implicitly by arithmetic instructions
• Set explicitly by compare instruction

– cmp a,b
» sets flags based on result of b-a



CS33 Intro to Computer Systems IX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (1)

• Assume 32-bit arithmetic

• x is 0x80000000
– TMIN if interpreted as twoʼs-complement
– 231 if interpreted as unsigned

• x-1 (0x7fffffff)
– TMAX if interpreted as twoʼs-complement
– 231-1 if interpreted as unsigned
– zero flag is not set
– sign flag is not set
– overflow flag is set
– carry flag is not set



CS33 Intro to Computer Systems IX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (2)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+1 (0x00000000)
– zero under either interpretation
– zero flag is set
– sign flag is not set
– overflow flag is not set
– carry flag is set



CS33 Intro to Computer Systems IX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (3)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+2 (0x00000001)
– (+)1 under either interpretation
– zero flag is not set
– sign flag is not set
– overflow flag is not set
– carry flag is set



CS33 Intro to Computer Systems IX–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2
• Set of flags giving status of most 

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign 
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow 
out of most-significant bit)

» for unsigned arithmetic interpretation

• Set explicitly by compare 
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to 
one by “cmp $2,$1”?

a) overflow flag only
b) carry flag only
c) sign and carry 

flags only
d) sign and overflow 

flags only
e) sign, overflow, and 

carry flags



Jump instructions cause the processor to start executing instructions at some specified 
address. For conditional jump instructions, whether to jump or not is determined by the 
values of the condition codes. Fortunately, rather than having to specify explicitly those 
values, one may use mnemonics as shown in the slide.

We'll see examples of their use in an upcoming lecture, when we're looking at x86 
assembler instructions.

CS33 Intro to Computer Systems IX–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.



In the C code above, the assignment to a might be coded in assembler as shown in the 
box in the lower left. But this brings up the question, where are the values represented 
by a, b, c, and d? Variable names are part of the C language, not assembler. Let’s 
assume that these global variables are located at addresses 1000, 1004, 1008, and 
1012, as shown on the right. Thus, correct assembler language would be as in the 
middle box, which deals with addresses, not variable names. Note that "mov 1004,%acc" 
means to copy the contents of location 1004 to the accumulator register; it does not 
mean to copy the integer 1004 into the register!

Beginning with this slide, whenever we draw pictures of memory, lower memory 
addresses are at the bottom, higher addresses are at the top. This is the opposite 
of how we’ve been drawing pictures of memory in previous slides.

CS33 Intro to Computer Systems IX–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
   a = (b + c) * d;
   ...
}

global 
variables

d1012:
c1008:
b1004:
a1000:mov   b,%acc

add   c,%acc
mul   d,%acc
mov   %acc,a

mov   1004,%acc
add   1008,%acc
mul   1012,%acc
mov   %acc,1000

Memory



Here we rearrange things a bit. b is a global variable, but a is a local variable within 
func, and c and d are arguments. The issue here is that the locations associated with a, 
c, and d will, in general, be different for each call to func. Thus, we somehow must 
modify the assembler code to take this into account.

CS33 Intro to Computer Systems IX–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
   int a;
   a = (b + c) * d;
   ...

}

mov   ?,%acc
add   ?,%acc
mul   ?,%acc

mov   %acc,?

• One copy of b for duration of 
program’s execution
• b’s address is the same 

for each call to func
• Different copies of a, c, and d 

for each call to func
• addresses are different in 

each call



Note that both positive and negative offsets might be used.

CS33 Intro to Computer Systems IX–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in 

memory
• Relative address

– offset from some 
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute 
address is 10000

• Datum’s relative 
address (to Blob) 
is 100
– its absolute 

address is 
10100



Here we load the value 10,000 into the base register (recall that the “$” means what 
follows is a literal value; a “%” sign means that what follows is the name of a register), 
then store the value 10 into the memory location 10100 (the contents of the base 
register plus 100): the notation n(%base) means the address obtained by adding n to the 
contents of the base register.

CS33 Intro to Computer Systems IX–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register



Here we return to our earlier example. We assume that, as part of the call to func, the 
base register is loaded with the address of the beginning of func’s current stack frame, 
and that the local variable a and the parameters c and d are located within the frame. 
Thus, we refer to them by their offset from the beginning of the stack frame, which are 
assumed to be -24, -8, and -16. Since the stack grows from higher addresses to lower 
addresses, these offsets are negative. Note that the first assembler instruction copies the 
contents of location 1000 into %acc.

CS33 Intro to Computer Systems IX–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

long b;

int func(long c, long d) {
   long a;
   a = (b + c) * d;
   ...

}

mov   1000,%acc
add   -8(%base),%acc
mul   -16(%base),%acc

mov   %acc,-24(%base)

global 
variables

Memory

earlier stack 
frame

previous stack 
frame

func stack 
frame

b1000:

c
d
a

base ®



CS33 Intro to Computer Systems IX–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

long b;

int func(long c, long d) {
   long a;
   a = (b + c) * d;
   ...

}

mov   1000,%acc
add   -8(%base),%acc
mul   -12(%base),%acc

mov   %acc,-16(%base)

global 
variables

Memory

earlier stack 
frame

previous stack 
frame

func stack 
frame

b1000:

c
d
a

base ®

Suppose the value in base is 
10,000. What is the address of 
c?

a) 10,016
b) 10,008
c) 9992
d) 9984



We’ve now seen four registers: the instruction pointer, the accumulator, the base 
register, and the condition codes. The accumulator is used to hold intermediate results 
for arithmetic; the base register is used to hold addresses for relative addressing. There’s 
no particular reason why the accumulator can’t be used as the base register and vice 
versa: thus, they may be used interchangeably. Furthermore, it is useful to have more 
than two such dual-purpose registers. As we will see, the x86 architecture has eight 
such registers; the x86-64 architecture has 16.

CS33 Intro to Computer Systems IX–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable



Why do we make the distinction between registers and memory? Registers are in the 
processor itself and can be read from and written to very quickly. Memory is on separate 
hardware and takes much more time to access than registers do. Thus, operations 
involving only registers can be executed very quickly, while significantly more time is 
required to access memory. Processors typically have relatively few registers (the IA-32 
architecture has eight, the x86-64 architecture has 16; some other architectures have 
many more, perhaps as many as 256); memory is measured in gigabytes.

Note that memory access-time is mitigated by the use of in-processor caches, something 
that we will discuss in a few weeks.

CS33 Intro to Computer Systems IX–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions 
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long 
distance



The early computers of the x86 family had 16-bit words; starting with the 386, they 
supported 32-bit words.

CS33 Intro to Computer Systems IX–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8086 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32



232 = 4 gigabytes.

264 = 16 exbibytes.

All SunLab computers are x86-64.

CS33 Intro to Computer Systems IX–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

264

• 232 used to be considered a large number
– one couldn’t afford 232 bytes of memory, so no 

problem with that as an upper bound
• Intel (and others) saw need for machines with 

64-bit addresses
– devised IA64 architecture with HP

» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64



ARM originally stood for Acorn RISC machine. Acorn was a British computer company 
that was established in 1978, but no longer exists. RISC stands for Reduced Instruction 
Set Computer. The RISC concept was devised in the 1980s and was very popular in the 
80s and 90s. The idea is to design computers with relatively few instructions, but 
implement those instructions so they can execute very quickly. The fastest computers in 
the 80s and 90s were RISC computers. But Intel, who built computer chips with fairly 
complex instruction sets (CISC), learned how to make their computers run really fast as 
well. That, coupled with the fact that Windows ran exclusively on Intel, helped Intel stay 
in the lead.

ARM later became Advanced RISC Machine. Now, it doesn’t stand for anything, It’s just 
ARM.

Apple (whose computers originally ran Motorola 68000 processors before they switched 
to Intel) decided that they could make more cost-effective and faster processors by 
adapting the ARM design and including GPUs (graphics processing units). GPUs are 
specialized processors that help with image processing, but also can be used with other 
computations that have a lot of inherent parallelism. Apple refers to their new chips as 
M1 and M2 (presumably an M3 is not far behind).

CS33 Intro to Computer Systems IX–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines 

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”
• Intel x86-64 is very different from ARM64 ⏤ 

internally
• Programming concepts are similar
• We cover Intel; most of the concepts apply to 

ARM


