CS 33

Data Representation (Part 3)

CS33 Intro to Computer Systems

IX–1

Byte Ordering

- Four-byte integer
 - -0x76543210

Stored at location 0x100

- which byte is at 0x100?
- which byte is at 0x103?

Which Byte Ordering Do We Use?

```
int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
        printf("%02x", xarray[i]);
    }
    printf("\n");
    return 0;
}
O0010203</pre>
```

03020100

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

Representable Numbers

• Limitation #1

- can exactly represent only numbers of the form n/2^k
 - » other rational numbers have repeating bit representations

Limitation #2

- just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

IEEE Floating Point

IEEE Standard 754

- established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
- supported on all major CPUs

• Driven by numerical concerns

- nice standards for rounding, overflow, underflow
- hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

Floating-Point Representation

Numerical Form:

- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s	ехр	frac
---	-----	------

Precision options

• Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

	S	ехр	frac		
	1	15-bits		64-bits	
CS33 Intro to Computer Systems			IX-9		

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 (M = 2.0ϵ)
 - get extra leading bit for "free"

Normalized Encoding Example

- Value: float F = 15213.0;
 - $-15213_{10} = 11101101101_{2}$
 - = 1.1101101101₂ x 2¹³

Significand

Μ	=	1.101101101_2
frac	=	$\underline{1101101101}000000000_2$

• Exponent

Ε	=	13		
bias	=	127		
exp	=	140	=	10001100 ₂

• Result:

0 10001100 1101101101000000000 s exp frac

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = –Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac

Cases

- $\exp = 000...0, \operatorname{frac} = 000...0$
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
- $-\exp = 000...0, \operatorname{frac} \neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

Special Values

- **Condition**: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - $-e.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating-Point Encodings

Tiny Floating-Point Example

s	exp	frac
1	4-bits	3-bits

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	S	exp	frac	Е	Value			
	0	0000	000	-6	0			
	0	0000	001	-6	1/8*1/64 =	= 1	1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 =	= 2	2/512	
numbers								
	0	0000	110	-6	6/8*1/64 =	= 6	6/512	
	0	0000	111	-6	7/8*1/64 =	= 7	7/512	largest denorm
	0	0001	000	-6	8/8*1/64 =	= 8	8/512	smallest norm
	0	0001	001	-6	9/8*1/64 =	= 9	9/512	
	•••							
	0	0110	110	-1	14/8*1/2 =	= 1	14/16	
	0	0110	111	-1	15/8*1/2 =	= 1	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 =	= 1	1	
numbers	0	0111	001	0	9/8*1 =	= 9	9/8	closest to 1 above
	0	0111	010	0	10/8*1 =	= 1	10/8	
	0	1110	110	7	14/8*128 =	= 2	224	
	0	1110	111	7	15/8*128 =	= 2	240	largest norm
	0	1111	000	n/a	inf			
CS33 Intro to	Cor	nputer S	ystems		IX–16			

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits

• Notice how the distribution gets denser toward zero. 8 values

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits

– bias is 3

S	exp	frac
1	3-bits	2-bits

Quiz 1

6-bit IEEE-like format

- e = 3 exponent bitssexpfrac- f = 2 fraction bits13-bits2-bits

What number is represented by 0 010 10? a) 3 b) 1.5 c) .75 d) none of the above

Mapping Real Numbers to Float

- The real number 3 is represented as 0 100 10
- The real number 3.5 is represented as 0 100 11
- How is the real number 3.4 represented?
 0 100 11
- How is the real number π represented?
 0 100 10

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to R
- What if it's midway between two values?
 - rounding rules determine outcome

Floats are Sets of Values

- If A, B, and C are successive floating-point values
 - e.g., 010001, 010010, and 010011
- B represents all real numbers from midway between A and B through midway between B and C

CS33 Intro to Computer Systems

IX-22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

- Normalized numbers
 - for a particular exponent value E and an S-bit significand, the range from 2^E up to 2^{E+1} is divided into 2^S equi-spaced floating-point values
 - » thus each floating-point value represents 1/2^s of the range of values with that exponent
 - » all bits of the significand are important
 - » we say that there are S significant bits for reasonably large S, each floating-point value covers a rather small part of the range
 - high accuracy
 - for S=23 (32-bit float), accurate to one in 2²³ (.0000119% accuracy)

Significance

- Unnormalized numbers
 - high-order zero bits of the significand aren't important
 - in 8-bit floating point, 0 0000 001 represents 2⁻⁹
 - » it is the only value with that exponent: 1 significant bit (either 2⁻⁹ or 0)
 - » 50% accuracy
 - 0 0000 010 represents 2⁻⁸
 0 0000 011 represents 1.5*2⁻⁸
 - » only two values with exponent -8: 2 significant bits (encoding those two values, as well as 2⁻⁹ and 0)
 - » 25% accuracy
 - fewer significant bits means less accuracy
 - 0 0000 001 represents a range of values from .5*2-9 to 1.5*2-9

+/- Zero

- Only one zero for ints
 - an int is a single number, not a range of numbers, thus there can be only zero
- Floating-point zero
 - a range of numbers around the real 0
 - it really matters which side of 0 we're on!
 - » a very large negative number divided by a very small negative number should be positive

 $-\infty/-0 = +\infty$

» a very large positive number divided by a very small negative number should be negative

 $+\infty /-0 = -\infty$

CS 33

Intro to Machine Programming

CS33 Intro to Computer Systems

IX-26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Machine Model

Processor: Some Details

Processor: Basic Operation

while (forever) {
 fetch instruction IP points at
 decode instruction
 fetch operands
 execute
 store results
 update IP and condition code

Instructions ...

Op code Operand1	Operand2	•••
------------------	----------	-----

Operands

• Form

immediate vs. reference

value vs. address

How many?

3
add a,b,c
c = a + b

Operands (continued)

- Accumulator
 - special memory in the processor
 - » known as a register
 - » fast access
 - allows single-operand instructions
 - » add a

» add b

• acc += b

From C to Assembler ...

CS33 Intro to Computer Systems

IX-34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes

- Set of flags giving status of most recent operation:
 - zero flag
 - » result was zero
 - sign flag
 - » for signed arithmetic interpretation: sign bit is set
 - overflow flag
 - » for signed arithmetic interpretation
 - carry flag (generated by carry or borrow out of mostsignificant bit)
 - » for unsigned arithmetic interpretation
- Set implicitly by arithmetic instructions
- Set explicitly by compare instruction
 - cmp a,b
 - » sets flags based on result of b-a

CS33 Intro to Computer Systems

IX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (1)

- Assume 32-bit arithmetic
- x is 0x8000000
 - TMIN if interpreted as two's-complement
 - 2³¹ if interpreted as unsigned
- x-1 (0x7ffffff)
 - TMAX if interpreted as two's-complement
 - 2³¹-1 if interpreted as unsigned
 - zero flag is not set
 - sign flag is not set
 - overflow flag is set
 - carry flag is not set

Examples (2)

- x is 0xffffffff
 - -1 if interpreted as two's-complement
 - UMAX (2³²-1) if interpreted as unsigned
- x+1 (0x0000000)
 - zero under either interpretation
 - zero flag is set
 - sign flag is not set
 - overflow flag is not set
 - carry flag is set

Examples (3)

- x is 0xfffffff
 - -1 if interpreted as two's-complement
 - UMAX (2³²-1) if interpreted as unsigned
- x+2 (0x0000001)
 - (+)1 under either interpretation
 - zero flag is not set
 - sign flag is not set
 - overflow flag is not set
 - carry flag is set

Quiz 2

Set of flags giving status of most recent operation:

- zero flag
 - » result was zero
- sign flag
 - » for signed arithmetic interpretation: sign bit is set
- overflow flag
 - » for signed arithmetic interpretation
- carry flag (generated by carry or borrow out of most-significant bit)
 - » for unsigned arithmetic interpretation
- Set explicitly by compare instruction
 - cmp a,b
 - » sets flags based on result of b-a

Which flags are set to one by "cmp \$2,\$1"?

- a) overflow flag only
- b) carry flag only
- c) sign and carry flags only
- d) sign and overflow flags only
- e) sign, overflow, and carry flags

Jump Instructions

- Unconditional jump
 - just do it
- Conditional jump
 - to jump or not to jump determined by conditioncode flags
 - field in the op code indicates how this is computed
 - in assembler language, simply say
 - » je
 - jump on equal
 - » jne
 - jump on not equal
 - » jg
 - jump on greater than (signed)
 - » etc.

Addresses

Addresses

int b;

```
int func(int c, int d) {
   int a;
   a = (b + c) * d;
                             One copy of b for duration of
                          •
                             program's execution
                              • b's address is the same
                                 for each call to func
   mov ?, %acc
                             Different copies of a, c, and d
   add ?, %acc
                             for each call to func

    addresses are different in

           ?, <sup>%</sup>acc
   mul
                                 each call
           %acc,?
   mov
```

Relative Addresses

CS33 Intro to Computer Systems

2⁶⁴-1

Base Registers

mov \$10000, %base
mov \$10, 100(%base)

Addresses

Quiz 3

Suppose the value in *base* is 10,000. What is the address of c?

- a) 10,016
- b) 10,008
- c) 9992
- d) 9984

mov	1000,%acc
add	-8(%base),%acc
mul	-12(%base),%acc
mov	%acc,-16(%base)

CS33 Intro to Computer Systems

IX-48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Intel x86

- Intel created the 8008 (in 1972)
- 8008 begat 8080
- 8080 begat 8086
- 8086 begat 8088
- 8086 begat 286
- 286 begat 386
- 386 begat 486
- 486 begat Pentium
- Pentium begat Pentium Pro
- Pentium Pro begat Pentium II
- ad infinitum

IA32

2⁶⁴

• 2³² used to be considered a large number

one couldn't afford 2³² bytes of memory, so no problem with that as an upper bound

Intel (and others) saw need for machines with 64-bit addresses

- devised IA64 architecture with HP
 - » became known as Itanium
 - » very different from x86
- AMD also saw such a need
 - developed 64-bit extension to x86, called x86-64
- Itanium flopped
- x86-64 dominated
- Intel, reluctantly, adopted x86-64

Why Intel?

- Most CS Department machines are Intel
- An increasing number of personal machines are not
 - Apple has switched to ARM
 - packaged into their M1, M2, etc. chips
 - » "Apple Silicon"
- Intel x86-64 is very different from ARM64 internally
- Programming concepts are similar
- We cover Intel; most of the concepts apply to ARM