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CS 33
Data Representation (Part 3)
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Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian
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Which Byte Ordering Do We Use?

int main() {
    unsigned int x = 0x03020100;

    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
            printf("%02x", xarray[i]);

    }

    printf("\n");

    return 0;
}

Possible results:

00010203
03020100
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Fractional binary numbers

• What is 1011.1012?
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2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •
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Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k
» other rational numbers have repeating bit 

representations
– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits
» limited range of numbers (very small values? very 

large?)



CS33 Intro to Computer Systems IX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating 

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware
» numerical analysts predominated over hardware 

designers in defining standard
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• Numerical Form: 
   (–1)s M  2E

– sign bit s determines whether number is negative or 
positive

– significand M normally a fractional value in range 
[1.0,2.0)

– exponent E weights value by power of two
• Encoding
– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac
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Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits
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“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E  =  Exp – Bias
– exp: unsigned value exp 
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M  =  1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”
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Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310  = 111011011011012  

                     = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac =   110110110110100000000002

• Exponent
E  = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000 
s exp frac
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Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:

M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
–  exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced
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Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥,  1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0
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Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN
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Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp  frac E Value 

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser 
toward zero. 8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Quiz 1

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above
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Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑
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Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the 
floating-point number whose value is closest 
to R

• What if itʼs midway between two values?
– rounding rules determine outcome
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Floats are Sets of Values

• If A, B, and C are successive floating-point 
values

– e.g., 010001, 010010, and 010011
• B represents all real numbers from midway 

between A and B through midway between B 
and C

A B C

Real numbers 
represented by B
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Significance

• Normalized numbers
– for a particular exponent value E and an S-bit 

significand, the range from 2E up to 2E+1 is divided 
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the 

range of values with that exponent
» all bits of the significand are important
» we say that there are S significant bits – for 

reasonably large S, each floating-point value covers 
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223 

(.0000119% accuracy)
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Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt 

important
– in 8-bit floating point, 0 0000 001 represents 2-9 

» it is the only value with that exponent: 1 significant 
bit (either 2-9 or 0)

» 50% accuracy
– 0 0000 010 represents 2-8

0 0000 011 represents 1.5*2-8
» only two values with exponent -8: 2 significant bits 

(encoding those two values, as well as 2-9 and 0)
» 25% accuracy

– fewer significant bits means less accuracy
– 0 0000 001 represents a range of values from .5*2-9 

to 1.5*2-9
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+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers, 

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small 
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small 

negative number should be negative

+¥ /−0 = −¥
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CS 33
Intro to Machine Programming
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Machine Model

Processor
(aka CPU)

Memory
(aka RAM)

instructions 
and data

data
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Memory

Instructions

Data

Instructions
are Dataor
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Processor: Some Details

Instruction pointer

Condition codes

Execution
engine
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Processor: Basic Operation

while (forever) {
  fetch instruction IP points at
  decode instruction
  fetch operands
  execute
  store results
  update IP and condition code
}
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Instructions ...

Op code Operand1 Operand2 ...
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Operands

• Form
– immediate vs. reference

» value vs. address

• How many?
– 3

» add a,b,c
• c = a + b

– 2
» add a,b

• b += a
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Operands (continued)

• Accumulator
– special memory in the processor

» known as a register
» fast access

– allows single-operand instructions
» add a

• acc += a
» add b

• acc += b
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From C to Assembler ...

a = (b + c) * d;

mov   b,%acc

add   c,%acc

mul   d,%acc

mov   %acc,a

if (a<b)
   c = 1;

else
   d = 1;

   cmp   a,b

   jge   .L1

   mov   $1,c

   jmp   .L2

.L1

   mov   $1,d

.L2

immediate 
operand

immediate 
operand
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Condition Codes
• Set of flags giving status of most recent 

operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign bit is set
– overflow flag

» for signed arithmetic interpretation
– carry flag (generated by carry or borrow out of most-

significant bit)
» for unsigned arithmetic interpretation

• Set implicitly by arithmetic instructions
• Set explicitly by compare instruction

– cmp a,b
» sets flags based on result of b-a
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Examples (1)

• Assume 32-bit arithmetic

• x is 0x80000000
– TMIN if interpreted as twoʼs-complement
– 231 if interpreted as unsigned

• x-1 (0x7fffffff)
– TMAX if interpreted as twoʼs-complement
– 231-1 if interpreted as unsigned
– zero flag is not set
– sign flag is not set
– overflow flag is set
– carry flag is not set
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Examples (2)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+1 (0x00000000)
– zero under either interpretation
– zero flag is set
– sign flag is not set
– overflow flag is not set
– carry flag is set
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Examples (3)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+2 (0x00000001)
– (+)1 under either interpretation
– zero flag is not set
– sign flag is not set
– overflow flag is not set
– carry flag is set
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Quiz 2
• Set of flags giving status of most 

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign 
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow 
out of most-significant bit)

» for unsigned arithmetic interpretation

• Set explicitly by compare 
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to 
one by “cmp $2,$1”?

a) overflow flag only
b) carry flag only
c) sign and carry 

flags only
d) sign and overflow 

flags only
e) sign, overflow, and 

carry flags
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Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.
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Addresses

int a, b, c, d;

int main() {
   a = (b + c) * d;

   ...

}

global 
variables

d1012:
c1008:
b1004:
a1000:

mov   b,%acc
add   c,%acc
mul   d,%acc
mov   %acc,a

mov   1004,%acc
add   1008,%acc
mul   1012,%acc
mov   %acc,1000

Memory
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Addresses

int b;

int func(int c, int d) {
   int a;
   a = (b + c) * d;

   ...

}

mov   ?,%acc

add   ?,%acc

mul   ?,%acc

mov   %acc,?

• One copy of b for duration of 
program’s execution
• b’s address is the same 

for each call to func
• Different copies of a, c, and d 

for each call to func
• addresses are different in 

each call
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Relative Addresses

• Absolute address
– actual location in 

memory
• Relative address

– offset from some 
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute 
address is 10000

• Datum’s relative 
address (to Blob) 
is 100

– its absolute 
address is 
10100
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Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register
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Addresses

long b;

int func(long c, long d) {
   long a;
   a = (b + c) * d;

   ...

}

mov   1000,%acc

add   -8(%base),%acc

mul   -16(%base),%acc

mov   %acc,-24(%base)

global 
variables

Memory

earlier stack 
frame

previous stack 
frame

func stack 
frame

b1000:

c
d
a

base ®
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Quiz 3

long b;

int func(long c, long d) {
   long a;
   a = (b + c) * d;

   ...

}

mov   1000,%acc

add   -8(%base),%acc

mul   -12(%base),%acc

mov   %acc,-16(%base)

global 
variables

Memory

earlier stack 
frame

previous stack 
frame

func stack 
frame

b1000:

c
d
a

base ®

Suppose the value in base is 
10,000. What is the address of 
c?

a) 10,016
b) 10,008
c) 9992
d) 9984
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Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable
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Registers vs. Memory

Memory
(aka RAM)

instructions 
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long 
distance
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Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8086 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32
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264
• 232 used to be considered a large number

– one couldn’t afford 232 bytes of memory, so no 
problem with that as an upper bound

• Intel (and others) saw need for machines with 
64-bit addresses

– devised IA64 architecture with HP
» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64
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Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines 

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”

• Intel x86-64 is very different from ARM64 ⏤ 
internally

• Programming concepts are similar
• We cover Intel; most of the concepts apply to 

ARM


