
CS33 Intro to Computer Systems IX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 3)

CS33 Intro to Computer Systems IX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian

CS33 Intro to Computer Systems IX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Which Byte Ordering Do We Use?

int main() {
 unsigned int x = 0x03020100;

 unsigned char *xarray = (unsigned char *)&x;
 for (int i=0; i<4; i++) {
 printf("%02x", xarray[i]);

 }

 printf("\n");

 return 0;
}

Possible results:

00010203
03020100

CS33 Intro to Computer Systems IX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?

CS33 Intro to Computer Systems IX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •

CS33 Intro to Computer Systems IX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k
» other rational numbers have repeating bit

representations
– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits
» limited range of numbers (very small values? very

large?)

CS33 Intro to Computer Systems IX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware
» numerical analysts predominated over hardware

designers in defining standard

CS33 Intro to Computer Systems IX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

• Numerical Form:
 (–1)s M 2E

– sign bit s determines whether number is negative or
positive

– significand M normally a fractional value in range
[1.0,2.0)

– exponent E weights value by power of two
• Encoding
– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac

CS33 Intro to Computer Systems IX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits

CS33 Intro to Computer Systems IX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E = Exp – Bias
– exp: unsigned value exp
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M = 1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”

CS33 Intro to Computer Systems IX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

 = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

CS33 Intro to Computer Systems IX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:

M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
– exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced

CS33 Intro to Computer Systems IX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

CS33 Intro to Computer Systems IX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

CS33 Intro to Computer Systems IX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

CS33 Intro to Computer Systems IX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

CS33 Intro to Computer Systems IX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser
toward zero. 8 values

s exp frac

1 3-bits 2-bits

CS33 Intro to Computer Systems IX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

CS33 Intro to Computer Systems IX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above

CS33 Intro to Computer Systems IX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑

CS33 Intro to Computer Systems IX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

• What if itʼs midway between two values?
– rounding rules determine outcome

CS33 Intro to Computer Systems IX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values

– e.g., 010001, 010010, and 010011
• B represents all real numbers from midway

between A and B through midway between B
and C

A B C

Real numbers
represented by B

CS33 Intro to Computer Systems IX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the

range of values with that exponent
» all bits of the significand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

CS33 Intro to Computer Systems IX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt

important
– in 8-bit floating point, 0 0000 001 represents 2-9

» it is the only value with that exponent: 1 significant
bit (either 2-9 or 0)

» 50% accuracy
– 0 0000 010 represents 2-8

0 0000 011 represents 1.5*2-8
» only two values with exponent -8: 2 significant bits

(encoding those two values, as well as 2-9 and 0)
» 25% accuracy

– fewer significant bits means less accuracy
– 0 0000 001 represents a range of values from .5*2-9

to 1.5*2-9

CS33 Intro to Computer Systems IX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

CS33 Intro to Computer Systems IX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Machine Programming

CS33 Intro to Computer Systems IX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Machine Model

Processor
(aka CPU)

Memory
(aka RAM)

instructions
and data

data

CS33 Intro to Computer Systems IX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory

Instructions

Data

Instructions
are Dataor

CS33 Intro to Computer Systems IX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processor: Some Details

Instruction pointer

Condition codes

Execution
engine

CS33 Intro to Computer Systems IX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processor: Basic Operation

while (forever) {
 fetch instruction IP points at
 decode instruction
 fetch operands
 execute
 store results
 update IP and condition code
}

CS33 Intro to Computer Systems IX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Instructions ...

Op code Operand1 Operand2 ...

CS33 Intro to Computer Systems IX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Operands

• Form
– immediate vs. reference

» value vs. address

• How many?
– 3

» add a,b,c
• c = a + b

– 2
» add a,b

• b += a

CS33 Intro to Computer Systems IX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Operands (continued)

• Accumulator
– special memory in the processor

» known as a register
» fast access

– allows single-operand instructions
» add a

• acc += a
» add b

• acc += b

CS33 Intro to Computer Systems IX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

From C to Assembler ...

a = (b + c) * d;

mov b,%acc

add c,%acc

mul d,%acc

mov %acc,a

if (a<b)
 c = 1;

else
 d = 1;

 cmp a,b

 jge .L1

 mov $1,c

 jmp .L2

.L1

 mov $1,d

.L2

immediate
operand

immediate
operand

CS33 Intro to Computer Systems IX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes
• Set of flags giving status of most recent

operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign bit is set
– overflow flag

» for signed arithmetic interpretation
– carry flag (generated by carry or borrow out of most-

significant bit)
» for unsigned arithmetic interpretation

• Set implicitly by arithmetic instructions
• Set explicitly by compare instruction

– cmp a,b
» sets flags based on result of b-a

CS33 Intro to Computer Systems IX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (1)

• Assume 32-bit arithmetic

• x is 0x80000000
– TMIN if interpreted as twoʼs-complement
– 231 if interpreted as unsigned

• x-1 (0x7fffffff)
– TMAX if interpreted as twoʼs-complement
– 231-1 if interpreted as unsigned
– zero flag is not set
– sign flag is not set
– overflow flag is set
– carry flag is not set

CS33 Intro to Computer Systems IX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (2)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+1 (0x00000000)
– zero under either interpretation
– zero flag is set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Examples (3)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+2 (0x00000001)
– (+)1 under either interpretation
– zero flag is not set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2
• Set of flags giving status of most

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow
out of most-significant bit)

» for unsigned arithmetic interpretation

• Set explicitly by compare
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to
one by “cmp $2,$1”?

a) overflow flag only
b) carry flag only
c) sign and carry

flags only
d) sign and overflow

flags only
e) sign, overflow, and

carry flags

CS33 Intro to Computer Systems IX–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

CS33 Intro to Computer Systems IX–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
 a = (b + c) * d;

 ...

}

global
variables

d1012:
c1008:
b1004:
a1000:

mov b,%acc
add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

CS33 Intro to Computer Systems IX–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
 int a;
 a = (b + c) * d;

 ...

}

mov ?,%acc

add ?,%acc

mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same

for each call to func
• Different copies of a, c, and d

for each call to func
• addresses are different in

each call

CS33 Intro to Computer Systems IX–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100

– its absolute
address is
10100

CS33 Intro to Computer Systems IX–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

CS33 Intro to Computer Systems IX–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems IX–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -12(%base),%acc

mov %acc,-16(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 10,016
b) 10,008
c) 9992
d) 9984

CS33 Intro to Computer Systems IX–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

CS33 Intro to Computer Systems IX–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

CS33 Intro to Computer Systems IX–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8086 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

CS33 Intro to Computer Systems IX–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

264
• 232 used to be considered a large number

– one couldn’t afford 232 bytes of memory, so no
problem with that as an upper bound

• Intel (and others) saw need for machines with
64-bit addresses

– devised IA64 architecture with HP
» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

CS33 Intro to Computer Systems IX–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”

• Intel x86-64 is very different from ARM64 ⏤
internally

• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

