
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems X–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (2)

Jump instructions cause the processor to start executing instructions at some specified
address. For conditional jump instructions, whether to jump or not is determined by the
values of the condition codes. Fortunately, rather than having to specify explicitly those
values, one may use mnemonics as shown in the slide.

We'll see examples of their use in an upcoming lecture, when we're looking at x86
assembler instructions.

CS33 Intro to Computer Systems X–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

In the C code above, the assignment to a might be coded in assembler as shown in the
box in the lower left. But this brings up the question, where are the values represented
by a, b, c, and d? Variable names are part of the C language, not assembler. Let’s
assume that these global variables are located at addresses 1000, 1004, 1008, and
1012, as shown on the right. Thus, correct assembler language would be as in the
middle box, which deals with addresses, not variable names. Note that "mov 1004,%acc"
means to copy the contents of location 1004 to the accumulator register; it does not
mean to copy the integer 1004 into the register!

Beginning with this slide, whenever we draw pictures of memory, lower memory
addresses are at the bottom, higher addresses are at the top. This is the opposite
of how we’ve been drawing pictures of memory in previous slides.

CS33 Intro to Computer Systems X–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
 a = (b + c) * d;
 ...
}

global
variables

d1012:
c1008:
b1004:
a1000:mov b,%acc

add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

Here we rearrange things a bit. b is a global variable, but a is a local variable within
func, and c and d are arguments. The issue here is that the locations associated with a,
c, and d will, in general, be different for each call to func. Thus, we somehow must
modify the assembler code to take this into account.

CS33 Intro to Computer Systems X–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
 int a;
 a = (b + c) * d;
 ...

}

mov ?,%acc
add ?,%acc
mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same in

each call to func
• Different copies of a, c, and d

in each call to func
• addresses are different in

each call

Note that both positive and negative offsets might be used.

CS33 Intro to Computer Systems X–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100
– its absolute

address is
10100

Here we load the value 10,000 into the base register (recall that the “$” means what
follows is a literal value; a “%” sign means that what follows is the name of a register),
then store the value 10 into the memory location 10100 (the contents of the base
register plus 100): the notation n(%base) means the address obtained by adding n to the
contents of the base register.

CS33 Intro to Computer Systems X–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

Here we return to our earlier example. We assume that, as part of the call to func, the
base register is loaded with the address of the beginning of func’s current stack frame,
and that the local variable a and the parameters c and d are located within the frame.
Thus, we refer to them by their offset from the beginning of the stack frame, which are
assumed to be -24, -8, and -16. Since the stack grows from higher addresses to lower
addresses, these offsets are negative. Note that the first assembler instruction copies the
contents of location 1000 into %acc.

CS33 Intro to Computer Systems X–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;
 ...

}

mov 1000,%acc
add -8(%base),%acc
mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems X–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;
 ...

}

mov 1000,%acc
add -8(%base),%acc
mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 9984
b) 9992
c) 10,008
d) 10,016

We’ve now seen four registers: the instruction pointer, the accumulator, the base
register, and the condition codes. The accumulator is used to hold intermediate results
for arithmetic; the base register is used to hold addresses for relative addressing. There’s
no particular reason why the accumulator can’t be used as the base register and vice
versa: thus, they may be used interchangeably. Furthermore, it is useful to have more
than two such dual-purpose registers. As we will see, the x86 architecture has eight
such registers; the x86-64 architecture has 16.

CS33 Intro to Computer Systems X–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

Why do we make the distinction between registers and memory? Registers are in the
processor itself and can be read from and written to very quickly. Memory is on separate
hardware and takes much more time to access than registers do. Thus, operations
involving only registers can be executed very quickly, while significantly more time is
required to access memory. Processors typically have relatively few registers (the IA-32
architecture has eight, the x86-64 architecture has 16; some other architectures have
many more, perhaps as many as 256); memory is measured in gigabytes.

Note that memory access-time is mitigated by the use of in-processor caches, something
that we will discuss in a few weeks.

CS33 Intro to Computer Systems X–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

The early computers of the x86 family had 16-bit words; starting with the 386, they
supported 32-bit words.

CS33 Intro to Computer Systems X–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8088 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

232 = 4 gigabytes.

264 = 16 exbibytes.

All SunLab computers are x86-64.

CS33 Intro to Computer Systems X–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

264

• 232 used to be considered a large number
– one couldn’t afford 232 bytes of memory, so no

problem with that as an upper bound
• Intel (and others) saw need for machines with

64-bit addresses
– devised IA64 architecture with HP

» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

ARM originally stood for Acorn RISC machine. Acorn was a British computer company
that was established in 1978, but no longer exists. RISC stands for Reduced Instruction
Set Computer. The RISC concept was devised in the 1980s and was very popular in the
80s and 90s. The idea is to design computers with relatively few instructions, but
implement those instructions so they can execute very quickly. The fastest computers in
the 80s and 90s were RISC computers. But Intel, who built computer chips with fairly
complex instruction sets (CISC), learned how to make their computers run really fast as
well. That, coupled with the fact that Windows ran exclusively on Intel, helped Intel stay
in the lead.

ARM later became Advanced RISC Machine. Now, it doesn’t stand for anything, It’s just
ARM.

Apple (whose computers originally ran Motorola 68000 processors before they switched
to Intel) decided that they could make more cost-effective and faster processors by
adapting the ARM design and including GPUs (graphics processing units). GPUs are
specialized processors that help with image processing, but also can be used with other
computations that have a lot of inherent parallelism. Apple refers to their new chips as
M1 and M2 (presumably an M3 is not far behind).

CS33 Intro to Computer Systems X–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”
• Intel x86-64 is very different from ARM64 ⏤

internally
• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

Supplied by CMU.

CS33 Intro to Computer Systems X–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

Most instructions come in three (on IA32) or four (on x86-64) forms, one for each
possible operand size.

Note the confusion: long on x86 is 32 bits, but long in C is 64 bits.

Note that some assemblers (in particular, those of Microsoft and Intel) use a different
syntax. Rather than tag the mnemonic for the instruction with the operand size, they tag
the operands.

CS33 Intro to Computer Systems X–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

Supplied by CMU.

CS33 Intro to Computer Systems X–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

Supplied by CMU.

Note that %ebp/%rbp may be used as a base register as on IA32, but they don’t have to
be used that way. This will become clearer when we explore how the runtime stack is
accessed. The convention on Linux is for the first 6 arguments of a function to be in
registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9. The return value of a function is put in
%rax.

Note also that each register, in addition to having a 32-bit version, also has an 8-bit
(one-byte) version. For the numbered registers, it’s, for example, %r10b. For the other
registers it’s the same as for IA32.

CS33 Intro to Computer Systems X–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

Based on a slide supplied by CMU.

Some assemblers (in particular, those of Intel and Microsoft) place the operands in the
opposite order. Thus, the example of the slide would be “addl %rax,8(%rbp)”. The order
we use is that used by gcc, known as the “AT&T syntax” because it was used in the
original Unix assemblers, written at Bell Labs, then part of AT&T.

CS33 Intro to Computer Systems X–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

Supplied by CMU.

CS33 Intro to Computer Systems X–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

Supplied by CMU.

If one thinks of there being an array of registers, then “Reg[R]” selects register “R” from
this array.

CS33 Intro to Computer Systems X–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.)

CS33 Intro to Computer Systems X–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

swap:
 movq (%rdi), %rax
 movq 8(%rdi), %rdx
 movq %rdx, (%rdi)
 movq %rax, 8(%rdi)
 ret

In addition to using %rdi to contain the argument (the address of the structure), we use
%rax to contain the value of temp and %rdx to effectively be another temporary that
holds the value of p->y.

CS33 Intro to Computer Systems X–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

When we enter swapxy, %rdi contains the address of the structure.

CS33 Intro to Computer Systems X–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We copy the first component of p into temp, which is held in %rax.

CS33 Intro to Computer Systems X–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We then copy the second component into %rdx.

CS33 Intro to Computer Systems X–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

The second component, which we'd copied into %rdx, is now copied into the the first
component of the structure itself.

CS33 Intro to Computer Systems X–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

Finally, we update the second component, copying into it what had been the first
component.

CS33 Intro to Computer Systems X–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

%rbp 0
-8

-16

8

x
y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long ***x;
long y;
y = ***x;

// b
long **x;
long y;
y = **x;

// c
long *x;
long y;
y = *x;

// d
long x;
long y;
y = x;

Which C statements best describe the
assembler code?

Adapted from a slide supplied by CMU.

The instruction pointer is referred to as %rip. We'll see its use (in addressing) a bit later
in the course.

CS33 Intro to Computer Systems X–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
 D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

Adapted from a slide from CMU

CS33 Intro to Computer Systems X–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

Adapted from a slide supplied by CMU.

Note that a function returns a value by putting it in %rax.

CS33 Intro to Computer Systems X–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
 return x*12;
}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

On x86-64, for instructions with 32-bit (long) operands that produce 32-bit results going
into a register, the register must be a 32-bit register; the higher-order 32 bits are filled
with zeroes.

CS33 Intro to Computer Systems X–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems X–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

What value ends up in %ecx?

movq $1000,%rax
movq $1,%rbx
movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

