
CS33 Intro to Computer Systems X–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (2)

CS33 Intro to Computer Systems X–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

CS33 Intro to Computer Systems X–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
 a = (b + c) * d;

 ...

}

global
variables

d1012:
c1008:
b1004:
a1000:

mov b,%acc
add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

CS33 Intro to Computer Systems X–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
 int a;
 a = (b + c) * d;

 ...

}

mov ?,%acc

add ?,%acc

mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same in

each call to func
• Different copies of a, c, and d

in each call to func
• addresses are different in

each call

CS33 Intro to Computer Systems X–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100
– its absolute

address is
10100

CS33 Intro to Computer Systems X–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

CS33 Intro to Computer Systems X–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Addresses

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems X–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 9984
b) 9992
c) 10,008
d) 10,016

CS33 Intro to Computer Systems X–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

CS33 Intro to Computer Systems X–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

CS33 Intro to Computer Systems X–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8088 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

CS33 Intro to Computer Systems X–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

264
• 232 used to be considered a large number

– one couldn’t afford 232 bytes of memory, so no
problem with that as an upper bound

• Intel (and others) saw need for machines with
64-bit addresses

– devised IA64 architecture with HP
» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

CS33 Intro to Computer Systems X–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”

• Intel x86-64 is very different from ARM64 ⏤
internally

• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

CS33 Intro to Computer Systems X–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

CS33 Intro to Computer Systems X–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

CS33 Intro to Computer Systems X–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

CS33 Intro to Computer Systems X–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

CS33 Intro to Computer Systems X–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

CS33 Intro to Computer Systems X–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

CS33 Intro to Computer Systems X–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

CS33 Intro to Computer Systems X–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

swap:
 movq (%rdi), %rax
 movq 8(%rdi), %rdx
 movq %rdx, (%rdi)
 movq %rax, 8(%rdi)
 ret

CS33 Intro to Computer Systems X–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

%rbp 0

-8

-16

8

x

y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long ***x;
long y;
y = ***x;

// b
long **x;
long y;
y = **x;

// c
long *x;
long y;
y = *x;

// d
long x;
long y;
y = x;

Which C statements best describe the
assembler code?

CS33 Intro to Computer Systems X–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
 D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

CS33 Intro to Computer Systems X–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

CS33 Intro to Computer Systems X–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
 return x*12;
}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

CS33 Intro to Computer Systems X–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems X–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

What value ends up in %ecx?

movq $1000,%rax

movq $1,%rbx

movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

