
Some of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (4)

Supplied by CMU.

These operations allow one to set a byte depending on the values of the condition codes.

Some of these conditions aren't all that obvious. Suppose we are comparing A with B
(cmpl B,A). Thus the condition codes would be set as if we computed A-B. For signed
arithmetic, If A >= B, then the true result is non-negative. But some issues come up
because of two's complement arithmetic with a finite word size. If overflow does not
occur, then the sign flag should not be set. If overflow does occur (because A is positive,
B is negative, and A-B is a large positive number that does not fit in an int), then even
though the true result should have been positive, the actual result is negative. So, if
both the sign flag and the overflow flag are not set, we know that A >= B. If both flags are
set, we know the true result of the subtraction is positive and thus A>=B. But if one of
the two flags is set and the other isn't, then A must be less than B. Thus if ~(SF^OF) is
1, we know that A>=B. If ZF (zero flag) is set, we know that A==B. Thus for A>B, ZF is
not set.

For unsigned arithmetic, if A>B, then subtracting B from A doesn't require a borrow and
thus CF is not set; and since A is not equal to B, ZF is not set. If A<B, then subtracting
B from A requires a borrow and thus CF is set.

The other cases can be worked out similarly.

CS33 Intro to Computer Systems XII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reading Condition Codes

• SetX instructions
– set single byte (to 1 or 0) based on combinations of condition codes

SetX Condition Description
sete Equal / Zero
setne Not Equal / Not Zero
sets Negative
setns Nonnegative
setg Greater (Signed)
setge Greater or Equal (Signed)
setl Less (Signed)
setle Less or Equal (Signed)
seta Above (unsigned)
setb Below (unsigned)

ZF
~ZF
SF
~SF
~(SF^OF)&~ZF
~(SF^OF)
(SF^OF)
(SF^OF)|ZF
~CF&~ZF
CF

Supplied by CMU.

See the notes for slide 28.

CS33 Intro to Computer Systems XII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Jumping

• jX instructions
– Jump to different part of program depending on condition codes

jX Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

Supplied by CMU, but converted to x86-64.

The function computes the absolute value of the difference between its two arguments.

CS33 Intro to Computer Systems XII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example

int absdiff(int x, int y)
{
 int result;
 if (x > y) {
 result = x-y;
 } else {
 result = y-x;
 }
 return result;
}

absdiff:
 movl %esi, %eax
 cmpl %esi, %edi
 jle .L6
 subl %eax, %edi
 movl %edi, %eax
 jmp .L7
.L6:
 subl %edi, %eax
.L7:
 ret

Body1

Body2b

Body2a

x in %edi
y in %esi

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example (Cont.)
int goto_ad(int x, int y)
{
 int result;
 if (x <= y) goto Else;
 result = x-y;
 goto Exit;
Else:
 result = y-x;
Exit:
 return result;
}

• C allows “goto” as means of
transferring control
– closer to machine-level

programming style
• Generally considered bad

coding style

absdiff:
 movl %esi, %eax
 cmpl %esi, %edi
 jle .L6
 subl %eax, %edi
 movl %edi, %eax
 jmp .L7
.L6:
 subl %edi, %eax
.L7:
 ret

Body1

Body2b

Body2a

Supplied by CMU.

C's conditional expression, as shown in the slide, is sometimes useful, but often results
in really difficult-to-read code.

(There’s an “International Obfuscated C Code Contest” (IOCCC) that awards prizes to
those who use valid syntax to write the most difficult-to-understand implementations of
simple functions. The conditional expression features prominently in winners’ code. See
https://www.ioccc.org/.)

CS33 Intro to Computer Systems XII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code
val = Test ? Then_Expr : Else_Expr;

Goto Version
nt = !Test;

 if (nt) goto Else;
 val = Then_Expr;
 goto Done;
Else:
 val = Else_Expr;
Done:
 . . .

General Conditional-Expression
Translation

– Test is expression returning
integer
== 0 interpreted as false
≠ 0 interpreted as true

– Create separate code regions
for then and else expressions

– Execute appropriate one

val = x>y ? x-y : y-x;

Supplied by CMU.

CS33 Intro to Computer Systems XII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code
int pcount_do(unsigned x)
{
 int result = 0;
 do {
 result += x & 0x1;
 x >>= 1;
 } while (x);
 return result;
}

Goto Version
int pcount_do(unsigned x)
{
 int result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
 return result;
}

“Do-While” Loop Example

• Count number of 1’s in argument x (“popcount”)
• Use conditional branch either to continue looping or

to exit loop

Supplied by CMU.

Note that the condition codes are set as part of the execution of the shrl instruction.

CS33 Intro to Computer Systems XII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Goto Version
“Do-While” Loop Compilation

Registers:
%edi x
%eax result

movl $0, %eax # result = 0
.L2: # loop:
 movl %edi, %ecx
 andl $1, %ecx # t = x & 1
 addl %ecx, %eax # result += t
 shrl %edi # x >>= 1
 jne .L2 # if !0, goto loop

int pcount_do(unsigned x) {
 int result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” Translation

• Body:

• Test returns integer
= 0 interpreted as false
≠ 0 interpreted as true

{
 Statement1;
 Statement2;
 …
 Statementn;
}

Supplied by CMU.

CS33 Intro to Computer Systems XII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code Goto Version

“While” Loop Example

• Is this code equivalent to the do-while version?
– must jump out of loop if test fails

int pcount_while(unsigned x) {
 int result = 0;
 while (x) {
 result += x & 0x1;
 x >>= 1;
 }
 return result;
}

int pcount_do(unsigned x) {
 int result = 0;
 if (!x) goto done;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
done:
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

While version
while (Test)
 Body

Do-While Version
if (!Test)

 goto done;
 do
 Body
 while(Test);
done:

General “While” Translation

Goto Version
if (!Test)

 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

Supplied by CMU.

CS33 Intro to Computer Systems XII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Example

• Is this code equivalent to other versions?

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
 int i;
 int result = 0;
 for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

“For” Loop Form

for (Init; Test; Update)

 Body

General Form

for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
}

i = 0

i < WSIZE

i++

{
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
}

Init

Test

Update

Body

Supplied by CMU.

CS33 Intro to Computer Systems XII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

“For” Loop à While Loop

for (Init; Test; Update)

 Body

For Version

Init;

while (Test) {

 Body

 Update;
}

While Version

Supplied by CMU.

CS33 Intro to Computer Systems XII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

“For” Loop à … à Goto

for (Init; Test; Update)
 Body

For Version

Init;
while (Test) {
 Body
 Update;
}

While Version

Init;
 if (!Test)
 goto done;
loop:
 Body
 Update
 if (Test)
 goto loop;
done:

Init;
 if (!Test)
 goto done;
 do
 Body
 Update
 while(Test);
done:

Supplied by CMU.

CS33 Intro to Computer Systems XII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Conversion Example

Initial test can be optimized away

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
 int i;
 int result = 0;
 for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 return result;
}

Goto Version
int pcount_for_gt(unsigned x) {
 int i;
 int result = 0;
 i = 0;
 if (!(i < WSIZE))
 goto done;
 loop:
 {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 i++;
 if (i < WSIZE)
 goto loop;
 done:
 return result;
}

Init

!Test

Body

Update
Test

Code very much like this appears in level three of the traps project.

CS33 Intro to Computer Systems XII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Switch-Statement
Example

long switch_eg (long m, long d) {
 if (d < 1) return 0;
 switch(m) {
 case 1: case 3: case 5:
 case 7: case 8: case 10:
 case 12:
 if (d > 31) return 0;
 else return 1;
 case 2:
 if (d > 28) return 0;
 else return 1;
 case 4: case 6: case 9:
 case 11:
 if (d > 30) return 0;
 else return 1;
 default:
 return 0;
 }
 return 0;
}

Adapted from slide supplied by CMU to account for changes in gcc.

The translation is “approximate” because C doesn’t have the notion of the target of a
goto being a variable. But, if it did, then the translation is what we’d want!

Otab (for "offset table") is a table of relative address of the jump targets. The idea is,
given a value of x, Otab[x] contains a reference to the code block that should be handled
for that case in the switch statement (this code block is known as the jump target).
These references are offsets from the address Otab. In other words, Otab is an address,
if we add to it the offset of a particular jump target, we get the absolute address of that
jump target.

CS33 Intro to Computer Systems XII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Offset Structure

Code Block 0
Targ0:

Code Block 1
Targ1:

Code Block 2
Targ2:

Code Block n–1
Targn-1:

•
•
•

Targ0 Offset

Targ1 Offset

Targ2 Offset

Targn-1 Offset

•
•
•

Otab:

target = Otab + OTab[x];
goto *target;

switch(x) {
 case val_0:
 Block 0
 case val_1:
 Block 1
 • • •
 case val_n-1:
 Block n–1
}

Switch Form

Approximate Translation

Jump Offset Table
Jump Targets

Here's the assembler code obtained by compiling our C code in gcc with the –O1
optimization flag (specifying that some, but not lots of optimization should be done). We
explain this code in subsequent slides. The jump offset table starts at label .L4.

CS33 Intro to Computer Systems XII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code (1)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4
 .long .L3-.L4
 .long .L6-.L4

 .long .L3-.L4
 .long .L5-.L4
 .long .L3-.L4
 .long .L5-.L4
 .long .L3-.L4
 .long .L3-.L4

 .long .L5-.L4
 .long .L3-.L4
 .long .L5-.L4
 .long .L3-.L4
 .text

CS33 Intro to Computer Systems XII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code (2)

.L3:
 cmpq $31, %rsi
 setle %al
 movzbl %al, %eax
 ret
.L6:
 cmpq $28, %rsi
 setle %al
 movzbl %al, %eax
 ret

.L5:
 cmpq $30, %rsi
 setle %al
 movzbl %al, %eax
 ret
.L8:
 movl $0, %eax
.L1:
 ret

The first three instructions cause control to go to .L1 if the second argument (d) is less
than 1. At .L1 is code that simply returns (with a return value of 0).

CS33 Intro to Computer Systems XII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (1)
switch_eg:

 movl $0, %eax # return value set to 0
 testq %rsi, %rsi # sets cc based on %rsi & %rsi
 jle .L1 # go to L1, where it returns 0
 cmpq $12, %rdi
 ja .L8
 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax

 addq %rdx, %rax
 jmp *%rax

• testq %rsi, %rsi
• sets cc based on the contents of %rsi (d)
• jle

• jumps if (SF^OF)|ZF
• OF is not set
• jumps if SF or ZF is set (i.e., < 1)

The next two instructions simply check to make sure that %rdi (the first argument, m) is
less than or equal to 12. If not, control goes to .L8, which sets the return value to 0 and
returns. Of course, the return value (in %rax/%eax) is already zero, so setting it to zero
again is unnecessary.

Note that we’re using ja (jump if above), which is normally used after comparing
unsigned values. The first argument, m, is a (signed) long. But if it is interpreted as an
unsigned value, then if the leftmost bit (the sign bit) is set, it appears to be a very large
unsigned value, and thus the jump is taken.

CS33 Intro to Computer Systems XII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (2)
switch_eg:
 movl $0, %eax # return value set to 0
 testq %rsi, %rsi # sets cc based on %rsi & %rsi
 jle .L1 # go to L1, where it returns 0

 cmpq $12, %rdi # %rdi : 12
 ja .L8 # go to L8 if %rdi > 12 or < 0
 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

• ja .L8
• unsigned comparison, though m is signed!
• jumps if %rdi > 12
• also jumps if %rdi is negative

The table on the right is known as an offset table. Each line refers to the code to be
executed for the corresponding value of m. Each entry in the table is a long (recall that
in x86-64 assembler, long means 32 bits). The value of each entry is the difference
between the address of the table (.L4) and the address of the code to be executed for a
particular value of m (the other .L labels). Thus each entry is the distance (or offset) from
the beginning of the table to the code for each case. Note that this offset will be negative,
as explained below. It’s assumed that the offset fits in a 32-bit signed quantity (which
the system guarantees to be true.)

One might ask why we put 32-bit offsets in the table rather than 64-bit addresses. The
reason is to reduce the size of these tables – if we used addresses, they’d be twice the
size.

This table is not executable (it just contains offsets), but it should be treated as read-
only – its contents will never change. The directive “.section .rodata” tells the assembler
that we want this table to be located in memory that is read-only, but not executable.
The directive at the end of the table (“.text”) tells the assembler that what follows is
(again) executable code. This read-only, non-executable memory is located at a higher
address than the executable code is (accept this as a fact for now, we’ll see later why it is
so). Thus the offsets in the table are negative.

The highlighted code on the left is what interprets the table, We examine it next.

CS33 Intro to Computer Systems XII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (3)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4 # m=0
 .long .L3-.L4 # m=1
 .long .L6-.L4 # m=2
 .long .L3-.L4 # m=3
 .long .L5-.L4 # m=4
 .long .L3-.L4 # m=5
 .long .L5-.L4 # m=6
 .long .L3-.L4 # m=7
 .long .L3-.L4 # m=8
 .long .L5-.L4 # m=9
 .long .L3-.L4 # m=10
 .long .L5-.L4 # m=11
 .long .L3-.L4 # m=12
 .text

The highlighted code makes use of an indirect jump instruction, indicated by having an
asterisk before its register operand. The register contains an address, and the jump is
made to the code at that address. Note that jump instructions that are not indirect have
constants as their operands. We’ll see later on that, because of this, indirect jumps are
often much slower than non-indirect jumps.

CS33 Intro to Computer Systems XII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (4)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4 # m=0
 .long .L3-.L4 # m=1
 .long .L6-.L4 # m=2
 .long .L3-.L4 # m=3
 .long .L5-.L4 # m=4
 .long .L3-.L4 # m=5
 .long .L5-.L4 # m=6
 .long .L3-.L4 # m=7
 .long .L3-.L4 # m=8
 .long .L5-.L4 # m=9
 .long .L3-.L4 # m=10
 .long .L5-.L4 # m=11
 .long .L3-.L4 # m=12
 .text

indirect
jump

The leaq instruction (load effective address, quad), performs an address computation,
but rather than fetching the data at the address, it stores the address itself in %rdx.

What’s unusual about the instruction is that it uses %rip (the instruction pointer) as the
base register, and has a displacement that is a label. This is a special case for the
assembler, which can compute the offset between the leaq instruction and the label, and
use that value for the displacement field. Thus the instruction puts the address of the
offset table (.L4) into %rdx.

CS33 Intro to Computer Systems XII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (5)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4 # m=0
 .long .L3-.L4 # m=1
 .long .L6-.L4 # m=2
 .long .L3-.L4 # m=3
 .long .L5-.L4 # m=4
 .long .L3-.L4 # m=5
 .long .L5-.L4 # m=6
 .long .L3-.L4 # m=7
 .long .L3-.L4 # m=8
 .long .L5-.L4 # m=9
 .long .L3-.L4 # m=10
 .long .L5-.L4 # m=11
 .long .L3-.L4 # m=12
 .text

The movslq instruction copies a long (32 bits) into a quad (64 bits), and does sign
extension so as to preserve the sign of the value being copied.

%rdi contains m, the first argument, which is also the argument of the switch statement.
We use it to index into the offset table: As we saw in the previous slide, %rdx contains
the address of the table, whose entries are each 4 bytes long. Thus we use %rdi as an
index register, with a scale factor of 4. The contents of that entry (which is the distance
from the table to the code that should be executed to handle this case) is copied into
%rax, using sign extension to fill the register.

CS33 Intro to Computer Systems XII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (6)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4 # m=0
 .long .L3-.L4 # m=1
 .long .L6-.L4 # m=2
 .long .L3-.L4 # m=3
 .long .L5-.L4 # m=4
 .long .L3-.L4 # m=5
 .long .L5-.L4 # m=6
 .long .L3-.L4 # m=7
 .long .L3-.L4 # m=8
 .long .L5-.L4 # m=9
 .long .L3-.L4 # m=10
 .long .L5-.L4 # m=11
 .long .L3-.L4 # m=12
 .text

The offset of the code we want to jump to is in %rax. To convert this offset into an
absolute address, we need to add to it the address of the table. That’s what the addq
instruction does.

We can now do the indirect jump, to the address contained in %rax.

CS33 Intro to Computer Systems XII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (7)
switch_eg:
 movl $0, %eax
 testq %rsi, %rsi
 jle .L1
 cmpq $12, %rdi
 ja .L8

 leaq .L4(%rip), %rdx
 movslq (%rdx,%rdi,4), %rax
 addq %rdx, %rax
 jmp *%rax

.section .rodata
 .align 4
.L4:
 .long .L8-.L4 # m=0
 .long .L3-.L4 # m=1
 .long .L6-.L4 # m=2
 .long .L3-.L4 # m=3
 .long .L5-.L4 # m=4
 .long .L3-.L4 # m=5
 .long .L5-.L4 # m=6
 .long .L3-.L4 # m=7
 .long .L3-.L4 # m=8
 .long .L5-.L4 # m=9
 .long .L3-.L4 # m=10
 .long .L5-.L4 # m=11
 .long .L3-.L4 # m=12
 .text

CS33 Intro to Computer Systems XII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Switch Statements and Traps

• The code we just looked at was compiled with
gcc’s O1 flag
– a moderate amount of “optimization”

• Traps was compiled with the O1 flag
– no optimization

• O0 often produces easier-to-read (but less
efficient) code
– not so for switch

So, now that we know how switch statements are implemented, how might we "reverse
engineer" object code to figure out the switch statement it implements?

Here we're running gdb on a program that contains a call to switch_eg. We gave the
command "layout asm" so that we can see the assembly listing at the top of the slide. We
set a breakpoint at switch_eg.

Assuming no knowledge of the original source code, we look at the code for switch_eg
and see an indirect jump instruction at switch_eg+30, which is a definite indication that
the C code contained a switch statement. We can see that %rdx contains the address of
the offset table, and that %rax will be set to the entry in the table at the index given in
%rdi. The contents of %rdx are added to %rax, thus causing %rax to point to the
instruction the indirect jump will go to.

Note also that for leaq instructions in which the base register is %rip, gdb indicates (as a
comment) what the computed address is (0x555555556004 in this case, which is
the address of the offset table).

So, with all this in mind, after the breakpoint was reached, we issued the stepi (si)
command 8 times so that we could see the values of all registers just before the indirect
jmp. We then used the x/14dw gdb command to print 14 entries of a jump offset table
starting at the address contained in %rdx. We had to guess how many entries there are –
14 seems reasonable in that it seems unlikely that a switch statement has more than 14
cases, though it might. We know that the table comes after the executable code, so the

CS33 Intro to Computer Systems XII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (1)
│B+ 0x555555555165 <switch_eg> mov $0x0,%eax │
│ 0x55555555516a <switch_eg+5> test %rsi,%rsi │
│ 0x55555555516d <switch_eg+8> jle 0x5555555551ab <switch_eg+70> │
│ 0x55555555516f <switch_eg+10> cmp $0xc,%rdi │
│ 0x555555555173 <switch_eg+14> ja 0x5555555551a6 <switch_eg+65> │
│ 0x555555555175 <switch_eg+16> lea 0xe88(%rip),%rdx # 0x555555556004 │
│ 0x55555555517c <switch_eg+23> movslq (%rdx,%rdi,4),%rax │
│ 0x555555555180 <switch_eg+27> add %rdx,%rax │
│ >0x555555555183 <switch_eg+30> jmp *%rax │
│ 0x555555555185 <switch_eg+32> cmp $0x1f,%rsi │
│ 0x555555555189 <switch_eg+36> setle %al │
│ 0x55555555518c <switch_eg+39> movzbl %al,%eax │
│ 0x55555555518f <switch_eg+42> ret │

(gdb) x/14dw $rdx
0x555555556004: -3678 -3711 -3700 -3711
0x555555556014: -3689 -3711 -3689 -3711
0x555555556024: -3711 -3689 -3711 -3689
0x555555556034: -3711 1734439765

entries are negative. We see seven entries with values reasonably close to one another,
while the remaining entry is very different, so we conclude that the jump table
contains 13 entries.

The code for some case of the switch should come immediately after the jmp (what else
would go there?!). So the smallest (most negative) offset in the jump offset table must be
the offset for this first code segment. Thus offset -3711 corresponds to switch_eg+32 in
the assembly listing. It's at indices 1, 3, 5, 7, 8, 10, and 12 of the table, so it's this code
that's executed when the first argument of switch_eg is 1, 3, 5, 7, 8, 10, or 12.

Knowing this, we can figure out the rest. The slide contains all the code of switch_eg
from the indirect jump to the end of the function (and thus the code for all the cases of
the switch statement).

CS33 Intro to Computer Systems XII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (2)
│ >0x555555555183 <switch_eg+30> jmp *%rax │
│ 0x555555555185 <switch_eg+32> cmp $0x1f,%rsi │
│ 0x555555555189 <switch_eg+36> setle %al │
│ 0x55555555518c <switch_eg+39> movzbl %al,%eax │
│ 0x55555555518f <switch_eg+42> ret │
│ 0x555555555190 <switch_eg+43> cmp $0x1c,%rsi │
│ 0x555555555194 <switch_eg+47> setle %al │
│ 0x555555555197 <switch_eg+50> movzbl %al,%eax │
│ 0x55555555519a <switch_eg+53> ret │
│ 0x55555555519b <switch_eg+54> cmp $0x1e,%rsi │
│ 0x55555555519f <switch_eg+58> setle %al │
│ 0x5555555551a2 <switch_eg+61> movzbl %al,%eax │
│ 0x5555555551a5 <switch_eg+64> ret │
│ 0x5555555551a6 <switch_eg+65> mov $0x0,%eax │
│ 0x5555555551ab <switch_eg+70> ret │

(gdb) x/14dw $rdx
0x555555556004: -3678 -3711 -3700 -3711
0x555555556014: -3689 -3711 -3689 -3711
0x555555556024: -3711 -3689 -3711 -3689
0x555555556034: -3711 1734439765

Offset -3711

CS33 Intro to Computer Systems XII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1
What C code would you compile to get the following
assembler code?

movq $0, %rax
.L2:
 movq %rax, a(,%rax,8)
 addq $1, %rax
 cmpq $10, %rax
 jl .L2
 ret

long a[10];
void func() {
 long i;
 for (i=0; i<10; i++)
 a[i]= 1;
}

a

long a[10];
void func() {
 long i=0;
 while (i<10)
 a[i]= i++;
}

b

long a[10];
void func() {
 long i=0;
 switch (i) {
case 0:
 a[i] = 0;
 break;
default:
 a[i] = 10
 }
}

c

Here we revisit the slide we saw a few lectures ago, this time drawing it with high
addresses at the top and low addresses at the bottom. The point is that a large amount
of virtual memory is reserved for the stack. In most cases there's plenty of room for the
stack and we don't have to worry about exceeding its bounds. However, if we do exceed
its bounds (by accessing memory outside of what's been allocated), the program will get
a seg fault.

Note that read-only data (such as the offset tables used for switch statements) is placed
just above the executable code.

CS33 Intro to Computer Systems XII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression (Again): Where Stuff Is (Roughly)

0:

2n-1:

Virtual
Memory

Code
(aka text)

Global and
Static

Local Data

Stack

Read-Only Data

CS33 Intro to Computer Systems XII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Function Call and Return

• Function A calls function B
• Function B calls function C

... several million instructions later

• C returns
– how does it know to return to B?

• B returns
– how does it know to return to A?

Stacks, as implemented on the X86 for most operating systems (and, in particular,
Linux, OSX, and Windows) grow "downwards", from high memory addresses to low
memory addresses. To avoid confusion, we will not use the works "top of stack" or
"bottom of stack" but will instead use "stack begin" and "current stack end". The total
amount of memory available for the stack is that between the beginning of the stack and
the "stack limit". When the stack end reaches the stack limit, we're out of memory for
the stack.

CS33 Intro to Computer Systems XII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Runtime Stack

Stack

Stack Begin

Current Stack End

Stack Limit

Higher memory
addresses

Lower memory
addresses

The stack-pointer register (%rsp) points to the last byte of the stack. Thus, with little-
endian addressing, it points to the least-significant byte of the data item at the end of
the stack. Thus, %rsp in the slide points to what's perhaps an 8-byte item at the end of
the stack.

CS33 Intro to Computer Systems XII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stack Operations

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

Here we execute pushl to push a 4-byte item onto the end of the stack. First %rsp is
decremented by 4 bytes, then the item is copied into the 4-byte location now pointed to
by %rsp.

CS33 Intro to Computer Systems XII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Push

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

0x34

0x00
0x00
0x12

0xfff4

0xfff7
0xfff6
0xfff5

%rsp

pushl $0x1234

-4 bytes

Here we pop an item off the stack. The popl instruction copies the 4-byte item pointed to
by %rsp into its argument, then increments %rsp by 4.

CS33 Intro to Computer Systems XII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pop

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

0x34

0x00
0x00
0x12

0xfff4

0xfff7
0xfff6
0xfff5

%rsp

popl %r8d

0x00 0x00 0x12 0x34

+4 bytes

%r8d:

When a function is called (using the call instruction), the (8-byte) address of the
instruction just after the call (the "return address") is pushed onto the stack. Then when
the called function returns (via the ret instruction), the 8-byte address at the end of the
stack (pointed to by %rsp) is copied into the instruction pointer (%rip), thus causing
control to resume at the instruction following the original call.

CS33 Intro to Computer Systems XII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

Here we begin walking through what happens during a call and return.

Initially, %rip (the instruction pointer – what it points to is shown with a red arrow
pointing to the right) points to the call instruction – thus it's the next instruction to be
executed. %rsp (the stack pointer, shown with a green arrow pointing to the left) points
to the current end of the stack. The actual values contained in the relevant registers are
shown at the bottom of the slide (%rax isn't relevant yet, but will be soon!).

CS33 Intro to Computer Systems XII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f1 00 00 %rsp
00 00 00 00 00 00 10 00 %rip

%rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

st
ac

k
gr

ow
th

When the call instruction is executed, the address of the instruction after the call is
pushed onto the stack. Thus %rsp is decremented by eight and 0x1004 is copied to the
8-byte location that is now at the end of the stack. The instruction pointer, %rip, now
points to the first instruction of func.

CS33 Intro to Computer Systems XII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f0 ff f8 %rsp
00 00 00 00 00 00 20 00 %rip

%rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

Our function func puts its return value (6) into %rax, then executes the ret instruction.
At this point, the address of the instruction following the call is at the end of the stack.

CS33 Intro to Computer Systems XII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f0 ff f8 %rsp
00 00 00 00 00 00 22 03 %rip
00 00 00 00 00 00 00 06 %rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

The address at the end of the stack (0x1004) is popped off the stack and into %rip. Thus
execution resumes at the instruction following the call and %rsp is incremented by 8,
The function's return value is in %rax, for access by its caller.

CS33 Intro to Computer Systems XII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f1 00 00 %rsp
00 00 00 00 00 00 10 04 %rip
00 00 00 00 00 00 00 06 %rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

