
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (5)

We explore these two functions in the next set of slides, looking at how arguments and
local variables are stored on the stack. Note that the approach of storing arguments on
the stack is used on the IA32 architecture, and on the x86-64 architecture when the –
O0 optimization flag (meaning no optimization) is given to gcc.

CS33 Intro to Computer Systems XIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (C Code)

int mainfunc() {
 long array[3] =
 {2,117,-6};
 long sum =
 ASum(array, 3);
 ...

 return sum;
}

long ASum(long *a,
 unsigned long size) {
 long i, sum = 0;
 for (i=0; i<size; i++)
 sum += a[i];
 return sum;
}

• Local variables usually
allocated on stack

• Arguments to functions
pushed onto stack

• Local variables may be
put in registers (and thus
not on stack)

Here we have compiled code for mainfunc. We'll work through this in detail in upcoming
slides.

A function's stack frame is that part of the stack that holds its arguments, local
variables, etc. In this example code, register %rbp points to a known location towards
the beginning of the stack frame so that the arguments and local variables are located as
offsets from what %rbp points to.

Note, as will be explained, this is not what one would see when compiling it with normal
gcc options, which have arguments being passed via registers.

CS33 Intro to Computer Systems XIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (1)

mainfunc:
 pushq %rbp # save old %rbp
 movq %rsp, %rbp # set %rbp to point to stack frame
 subq $32, %rsp # alloc. space for locals (array and sum)
 movq $2, -32(%rbp) # initialize array[0]
 movq $117, -24(%rbp) # initialize array[1]

 movq $-6, -16(%rbp) # initialize array[2]
 pushq $3 # push arg 2
 leaq -32(%rbp), %rax # array address is put in %rax
 pushq %rax # push arg 1
 call ASum
 addq $16, %rsp # pop args

 movq %rax, -8(%rbp) # copy return value to sum
 ...
 addq $32, %rsp # pop locals
 popq %rbp # pop and restore old %rbp
 ret

And here is the compiled code for ASum. The same caveats given for the previous slide
apply to this one as well.

CS33 Intro to Computer Systems XIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (2)

ASum:
 pushq %rbp # save old %rbp
 movq %rsp, %rbp # set %rbp to point to stack frame
 movq $0, %rcx # i in %rcx
 movq $0, %rax # sum in %rax
 movq 16(%rbp), %rdx # copy arg 1 (array) into %rdx

loop:
 cmpq 24(%rbp), %rcx # i < size?
 jge done
 addq (%rdx,%rcx,8), %rax # sum += a[i]
 incq %rcx # i++
 ja loop

done:
 popq %rbp # pop and restore %rbp
 ret

On entry to mainfunc, %rsp points to the caller's return address.

CS33 Intro to Computer Systems XIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enter mainfunc
mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return addressrsp
rip

The first thing done by mainfunc is to save the caller's %rbp by pushing it onto the
stack.

CS33 Intro to Computer Systems XIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enter mainfunc
mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return addressrsp
rip

old %rbp

We then set up the new value of %rbp, so that it points to near the beginning of
mainfunc’s stack frame.

CS33 Intro to Computer Systems XIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setup Frame

old %rbp

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address
rsp

rip
rbp

Next, space for mainfunc's local variables is allocated on the stack by decrementing
%rsp by their total size (32 bytes). At this point we have mainfunc's stack frame in
place.

CS33 Intro to Computer Systems XIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Allocate Local Variables

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address
rsp riprbp

mainfuncʼs
stack
frame

mainfunc now initializes the stack space containing its local variables.

CS33 Intro to Computer Systems XIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp

rip
rbp

CS33 Intro to Computer Systems XIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp

rip

rbp

CS33 Intro to Computer Systems XIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp
rip

rbp

The second argument (3) to ASum is pushed onto the stack.

CS33 Intro to Computer Systems XIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Push Second Argument

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp rip

rbp

In preparation for pushing the first argument to ASum onto the stack, the address of the
array is put into %rax.

CS33 Intro to Computer Systems XIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get Array Address

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp rip

rbp

And finally, the address of the array is pushed onto the stack as ASum's first argument.

CS33 Intro to Computer Systems XIII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Push First Argument

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp
rip

rbp

mainfunc now calls ASum, pushing its return address onto the stack.

CS33 Intro to Computer Systems XIII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Call ASum

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp
rip

rbp

As on entry to mainfunc, %rbp is saved by pushing it onto the stack.

CS33 Intro to Computer Systems XIII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enter ASum

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

return address

rsp

rip

rbp

%rbp is now modified to point into ASum's stack frame.

CS33 Intro to Computer Systems XIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setup Frame

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

return address

rsp

rip
rbp

ASumʼs
stack
frame

ASum's instructions are now executed, summing the contents of its first argument and
storing the result in %rax.

CS33 Intro to Computer Systems XIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Execute the Function

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

return address

rsp

rip

rbp

Recall that when the function was entered, %rsp pointed to the return address (on the
stack). It now points to something that’s 8 bytes below that. Also recall that arguments
to a function are pushed onto the stack in reverse order.

CS33 Intro to Computer Systems XIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

Whatʼs at 16(%rbp) (after
the second instruction is
executed)?

a) the first argument to
ASum

b) the second argument
to ASum

c) a local variable
d) something else

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

In preparation for returning to its caller, ASum restores the previous value of %rbp by
popping it off the stack.

CS33 Intro to Computer Systems XIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

return address

rsp
rip

rbp

ASum returns by popping the return address off the stack and into %rip, so that
execution resumes in its caller (mainfunc).

CS33 Intro to Computer Systems XIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

return address

rsp

rip

rbp

mainfunc no longer needs the arguments it had pushed onto the stack for ASum, so it
pops them off the stack by adding their total size to %rsp.

CS33 Intro to Computer Systems XIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pop Arguments

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp
rip

rbp

The value returned by ASum (in %rax) is copied into the local variable sum (which is in
mainfunc's stack frame).

CS33 Intro to Computer Systems XIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Save Return Value

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp

rip

rbp

mainfunc is about to return, so it pops its local variables off the stack (by adding their
total size to %rsp).

CS33 Intro to Computer Systems XIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pop Local Variables

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address

rsp

rip

rbp

In preparation for returning, mainfunc restores its caller's %rbp by popping it off the
stack.

CS33 Intro to Computer Systems XIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return address
rsp

rip

rbp

Finally, mainfunc returns by popping its caller's return address off the stack and into
%rip.

CS33 Intro to Computer Systems XIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $2, -32(%rbp)
 movq $117, -24(%rbp)

 movq $-6, -16(%rbp)
 pushq $3
 leaq -32(%rbp), %rax
 pushq %rax
 call ASum
 addq $16, %rsp

 movq %rax, -8(%rbp)
 addq $32, %rsp
 popq %rbp
 ret

return addressrsp

rip

ASum modified a number of registers. But suppose its caller was using these registers
and depended on their values' being unchanged?

CS33 Intro to Computer Systems XIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Registers

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• Suppose its caller uses
these registers

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

...
movq $33, %rcx
movq $167, %rdx
pushq $6
pushq array
call ASum
 # assumes unmodified %rcx and %rdx
addq $16, %rsp
addq %rax,%rcx # %rcx was modified!
addq %rdx, %rcx # %rdx was modified!

CS33 Intro to Computer Systems XIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Register Values Across Function Calls

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• May the caller of ASum
depend on its registers
being the same on return?
– ASum saves and restores %rbp

and makes no net changes to
%rsp
» their values are unmodified on

return to its caller
– %rax, %rcx, and %rdx are not

saved and restored
» their values might be different

on return

ASum:
 pushq %rbp
 movq %rsp, %rbp
 movq $0, %rcx
 movq $0, %rax
 movq 16(%rbp), %rdx

loop:
 cmpq 24(%rbp), %rcx
 jge done
 addq (%rdx,%rcx,8), %rax
 incq %rcx
 ja loop

done:
 popq %rbp
 ret

Certain registers are designated as caller-save: if the caller depends on their values
being the same on return as they were before the function was called, it must save and
restore their values. Thus the called function (the "callee"), is free to modify these
registers.

Other registers are designated as callee-save: if the callee function modifies their values,
it must restore them to their original values before returning. Thus the caller may
depend upon their values being unmodified on return from the function call.

CS33 Intro to Computer Systems XIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Register-Saving Conventions
• Caller-save registers

– if the caller wants their values to be the same on
return from function calls, it must save and restore
them

 pushq %rcx
 call func
 popq %rcx

• Callee-save registers
– if the callee wants to use these registers, it must

first save them, then restore their values before
returning

func:
 pushq %rbx
 movq $6, %rbx
 ...
 popq %rbx

Based on a slide supplied by CMU.

Here is a list of which registers are callee-save, which are caller-save, and which have
special purposes. Note that this is merely a convention and not an inherent aspect of the
x86-64 architecture.

CS33 Intro to Computer Systems XIII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Base pointer Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

CS33 Intro to Computer Systems XIII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing Arguments in Registers

• Observations
– accessing registers is much faster than accessing

primary memory
» if arguments were in registers rather than on the

stack, speed would increase
– most functions have just a few arguments

• Actions
– change calling conventions so that the first six

arguments are passed in registers
» in caller-save registers

– any additional arguments are pushed on the stack

If one gives gcc the –O0 flag (which turns off all optimization) when compiling, the base
pointer (%rbp) will be used as in IA32: it is set to point to the stack frame and the
arguments are copied from the registers into the stack frame. This clearly slows down
the execution of the function, but makes the code easier for humans to read.

CS33 Intro to Computer Systems XIII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Bother with a Base Pointer?

• It (%rbp) points to the beginning of the stack
frame
– making it easy for people to figure out where things

are in the frame
– but people don’t execute the code ...

• The stack pointer always points somewhere
within the stack frame
– it moves about, but the compiler knows where it is

pointing
» a local variable might be at 8(%rsp) for one

instruction, but at 16(%rsp) for a subsequent one
» tough for people, but easy for the compiler

• Thus the base pointer is superfluous
– it can be used as a general-purpose register

Supplied by CMU.

CS33 Intro to Computer Systems XIII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Updated Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Argument #4

Argument #1

Argument #3

Argument #2

Argument #6

Argument #5

Here, again, is the IA32 stack frame. Recall that arguments are at positive offsets from
%ebp, while local variables are at negative offsets.

CS33 Intro to Computer Systems XIII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The IA32 Stack Frame

arg n

arg 1

...

return address
saved frame pointer

saved registers
local variables

%ebp

%esp

The convention used for the x86-64 architecture is that the first 6 arguments to a
function are passed in registers, there is no special frame-pointer register, and
everything on the stack is referred to via offsets from %rsp.

CS33 Intro to Computer Systems XIII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The x86-64 Stack Frame

return address

saved registers
local variables

%rsp

When code is compiled with the –O0 flag on gdb, turning off all optimization, the
compiler uses (unnecessarily) %rbp as a frame pointer so that the offsets to local
variables are constant and thus easier for humans to read. It also copies the arguments
from the registers to the stack frame (at a lower address than what %rbp contains). The
code for the buffer project (to be released on Friday) is compiled with the –O0 flag.

CS33 Intro to Computer Systems XIII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The -O0 x86-64 Stack Frame (Buffer)

return address
saved frame pointer

saved registers
local variables
copies of args

%rbp

%rsp

CS33 Intro to Computer Systems XIII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Summary

• Whatʼs pushed on the stack
– return address
– saved registers

» caller-saved by the caller
» callee-saved by the callee

– local variables
– function parameters

» those too large to be in registers (structs)
» those beyond the six that we have registers for

– large return values (structs)
» caller allocates space on stack
» callee copies return value to that space

Recall that %rbp is a callee-saved register.

CS33 Intro to Computer Systems XIII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose function A is compiled using the
convention that %rbp is used as the base
pointer, pointing to the beginning of the stack
frame. Function B is compiled using the
convention that thereʼs no need for a base
pointer. Will there be any problems if A calls B
or if B calls A?

a) Both work
b) Neither case will work
c) A calling B works, but B calling A doesnʼt
d) B calling A works, but A calling B doesnʼt

CS33 Intro to Computer Systems XIII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exploiting the Stack

Buffer-Overflow Attacks

Supplied by CMU.

The function getchar returns the next character to be typed in. If getchar returns EOF
(which is coded as a byte containing all ones – not a coding of any valid ASCII character,
but -1 if the byte is interpreted as a signed integer).

CS33 Intro to Computer Systems XIII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

String Library Code
• Implementation of Unix function gets()

– no way to specify limit on number of characters to read
• Similar problems with other library functions

– strcpy, strcat: copy strings of arbitrary length
– scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getchar();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Vulnerable Buffer Code

int main() {
 echo();

 return 0;
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

unix>./echo
123
123

unix>./echo
123456789ABCDEF01234567
123456789ABCDEF01234567

unix>./echo
123456789ABCDEF012345678
Segmentation Fault

Supplied by CMU, but adapted for x86-64.

Note that 24 bytes are allocated on the stack for buf, rather than the 4 specified in the C
code. This is an optimization having to do with the alignment of the stack pointer, a
subject we will discuss in an upcoming lecture.

The text in the angle brackets after the calls to gets and puts mentions “plt”. This refers
to the “procedure linkage table,” another topic we cover in an upcoming lecture. The
calls are to the gets and puts functions, which are not statically linked to the program,
but are dynamically linked. These concepts are not important now; we’ll cover them
towards the end of the semester.

CS33 Intro to Computer Systems XIII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer-Overflow Disassembly
000000000040054c <echo>:
40054c: 48 83 ec 18 sub $0x18,%rsp

 400550: 48 89 e7 mov %rsp,%rdi
 400553: e8 d8 fe ff ff callq 400430 <gets@plt>
 400558: 48 89 e7 mov %rsp,%rdi
 40055b: e8 b0 fe ff ff callq 400410 <puts@plt>
 400560: 48 83 c4 18 add $0x18,%rsp
 400564: c3 retq

0000000000400565 <main>:
400565: 48 83 ec 08 sub $0x8,%rsp

 400569: b8 00 00 00 00 mov $0x0,%eax
 40056e: e8 d9 ff ff ff callq 40054c <echo>
 400573: b8 00 00 00 00 mov $0x0,%eax
 400578: 48 83 c4 08 add $0x8,%rsp
 40057c: c3 retq

main:

echo:

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer-Overflow Stack

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 movq %rsp, %rdi
 call puts
 addq $24, %rsp
 ret

/* Echo Line */
void echo()
{
 char buf[4]; /* Too small! */
 gets(buf);
 puts(buf);
}

%rsp
(buf)

Before call to gets

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for echo

Supplied by CMU, but adapted for x86-64.

Within gdb, the second print shows the 4-byte value at the end of the stack (i.e., pointed to by %rsp),
interpreting it as an unsigned value. This is the return address, used by echo when it returns to main. What’s
in green will be the memory that will be allocated on the stack for buf.

CS33 Intro to Computer Systems XIII–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer Overflow
Stack Example

unix> gdb echo
(gdb) break echo
Breakpoint 1 at 0x40054c
(gdb) run
Breakpoint 1, 0x000000000040054c in echo ()
(gdb) print /x $rsp
$1 = 0x7fffffffe988
(gdb) print /x *(unsigned *)$rsp
$2 = 0x400573

40056e: e8 d9 ff ff ff callq 40054c <echo>
 400573: b8 00 00 00 00 mov $0x0,%eax

Stack frame
for main

[3][2][1][0]

00 00 00 00 00 40 05 73

Supplied by CMU, but adapted for x86-64.

The ASCII-encoded input is shown in the green portion of the stack frame. Note that gets reads input until
the first newline character, but then replaces it with the null character (0x0).

CS33 Intro to Computer Systems XIII–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #1

Overflow buf, but no problem

Before call to gets Input 1234567

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for main

00 36 35 34 33 32 31

00 00 00 00 00 40 05 73

40056e: e8 d9 ff ff ff callq 40054c <echo>
 400573: b8 00 00 00 00 mov $0x0,%eax

37

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #2

Still no problem

Before call to gets Input 123456789ABCDEF01234567

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for main

38 37 36 35 34 33 32 31

00 00 00 00 00 40 05 73

30 46 45 44 43 42 41 39
00 37 36 35 34 33 32 31

40056e: e8 d9 ff ff ff callq 40054c <echo>
 400573: b8 00 00 00 00 mov $0x0,%eax

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #3

Return address corrupted

Before call to gets Input 123456789ABCDEF012345678

Return Address

Stack frame
for main

[3][2][1][0]

40056e: e8 d9 ff ff ff callq 40054c <echo>
 400573: b8 00 00 00 00 mov $0x0,%eax

Stack frame
for main

38 37 36 35 34 33 32 31

00 00 00 00 00 40 05 73

30 46 45 44 43 42 41 39
38 37 36 35 34 33 32 31

00

Supplied by CMU.

The man page for gets says (under Bugs): "Never use gets." One might wonder why it
still exists – it's probably because too many programs would break if it were removed
(but these programs probably should be allowed to break).

CS33 Intro to Computer Systems XIII–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Avoiding Overflow Vulnerability

• Use library functions that limit string lengths
– fgets instead of gets
– strncpy instead of strcpy
– don’t use scanf with %s conversion specification

» use fgets to read the string
» or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Malicious Use of Buffer Overflow

• Input string contains byte representation of executable code
• Overwrite return address A with address of buffer buf
• When echo() executes ret, will jump to exploit code

int echo() {
 char buf[80];
 gets(buf);
 ...
 return ...;
}

void main(){
 echo();
 ...
}

Stack after call to gets()

buf

return
address
A

main stack frame

echo stack frame

buf

exploit
code

paddata written
by gets()

Programs susceptible to buffer-overflow attacks are amazingly common and thus such
attacks are probably the most numerous of the bug-exploitation techniques. Even
drivers for network interface devices might have such problems, making machines
vulnerable to attacks by maliciously created packets.

Here we have a too-simple implementation of an echo program, for which we will design
and implement an exploit. Note that, strangely, gcc has allocated 88 bytes for buf. We’ll
discuss reasons for this later — it has to do with cache alignment.

Note that in this version of our example, there is no function called "echo" – everything is
done starting from main.

CS33 Intro to Computer Systems XIII–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

int main() {
char buf[80];
gets(buf);
puts(buf);
return 0;

}

previous frame

return address

buf

return address

Exploit
main:
 subq $88, %rsp # grow stack
 movq %rsp, %rdi # setup arg
 call gets
 movq %rsp, %rdi # setup arg
 call puts
 movl $0, %eax # set return value
 addq $88, %rsp # pop stack
 ret

The “write” function is the lowest-level output function (which we discuss in a later
lecture). The first argument indicates we are writing to “standard output” (normally the
display). The second argument is what we’re writing, and the third argument is the
length of what we’re writing.

The “exit” function instructs the OS to terminate the program.

CS33 Intro to Computer Systems XIII–51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Crafting the Exploit ...

• Code + padding
– 96 bytes long

» 88 bytes for buf
» 8 bytes for return address

Code (in C):
void exploit() {
 write(1, "hacked by twd",
 strlen("hacked by twd"));
 exit(0);
}

return address

buf
(88 bytes)

previous frame

CS33 Intro to Computer Systems XIII–52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

The exploit code will be read into
memory starting at location
0x7fffffffe948. What value should
be put into the return-address
portion of the stack frame?

a) 0
b) 0x7fffffffe948
c) 0x7fffffffe9a0
d) it doesn’t matter what value goes

there

return address

buf
(88 bytes)

previous frame

0x7fffffffe948

0x7fffffffe9a0

