
Most of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook 
“Computer Systems: A Programmer’s Perspective,” 2nd Edition and are provided from the website of Carnegie-Mellon 
University, course 15-213, taught by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.
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CS 33
Architecture and Optimization (3)



Supplied by CMU.

Finally, we recognize that we don’t need to update *dest on each iteration, but only when we’re done.
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The program so far
void combine4(vec_ptr_t v, data_t *dest){
  int i;
  int length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 –O1 12.0 12.0 12.0 13.0
Combine4 2.0 3.0 3.0 5.0

Can we do better?



Supplied by CMU.
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Supplied by CMU.

These figures are for those cases in which the operands are either in registers or are immediate. For the other cases, 
additional time is required to load operands from memory or store them to memory.

"Cycles/Issue" is the number of clock cycles that must occur from the start of execution of one instruction to the start 
of execution to the next. The reciprocal of this value is the throughput: the number of instructions (typically a fraction) 
that can be completed per cycle.

"Capacity" is the number of functional units that can do the indicated operations.

The figures for load and store assume the data is coming from/going to the data cache. Much more time is required if 
the source or destination is RAM.

The latency for stores is a bit complicated – we might discuss it in a later lecture.

CS33 Intro to Computer Systems XVI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Instruction characteristics

Instruction Latency Cycles/Issue Capacity
Integer Add 1 1 4
Integer Multiply 3 1 1
Integer/Long Divide 3-30 3-30 1
Single/Double FP Add 3 1 1
Single/Double FP Multiply 5 1 2
Single/Double FP Divide 3-15 3-15 1

Load 4 1 2
Store - 1 2



Derived from a slide provided by CMU.

We assume that the source and destination are either immediate (source only) or registers. Thus, any bottlenecks due 
to memory access do not arise.

Each integer add requires one clock cycle of latency. It's also the case that, for each functional unit doing integer 
addition, the time required between add instructions is one clock cycle. However, since there are four such functional 
units, all four can be kept busy with integer add instructions and thus the aggregate throughput can be as good as 
one integer add instruction completing, on average, every .25 clock cycles, for a throughput of 4 instructions/cycle.

Each integer multiply requires three clock cycles. But since a new multiply instruction can be started every clock cycle 
(i.e., they can be pipelined), the aggregate throughput can be as good as one integer multiply completing every clock 
cycle.

Each floating point multiply requires five clock cycles, but they can be pipelined with one starting every clock cycle. 
Since there are two functional units that can perform floating point multiply, the aggregate throughput can be as good 
as one completing every .5 clock cycles, for a throughput of 2 instructions/cycle.
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Haswell CPU Performance Bounds

Integer Floating Point
 +  * + *
Latency 1.00 3.00 3.00 5.00
Throughput 4.00 1.00 1.00 2.00



Supplied by CMU.

These numbers are for the Haswell CPU. The row labelled "Combine4" gives the actual time, in clock cycles, taken by 
each execution of the loop. The row labelled "Latency bound" gives the time required for the arithmetic instruction 
(integer add or multiply, double-precision floating-point add or multiply) in each execution of the loop. The last row, 
"Throughput bound", gives the time required for the arithmetic instructions if they can be executed without delays by 
the multiple execution units – i.e., there are no data hazards (as explained in the previous lecture).
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x86-64 Compilation of Combine4

• Inner loop (case: SP floating-point multiply)

.L519:      # Loop:
 mullss (%rax,%rdx,4), %xmm0 # t = t * d[i]
 addq $1, %rdx     # i++
 cmpq %rdx, %rbp     # Compare length:i
 jg .L519     # If >, goto Loop

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Latency bound 1.00 3.00 3.00 5.0

Throughput 
bound

0.25 1.00 1.00 0.50



This is Figure 5.13 of Bryant and O’Hallaron. It shows the code for the single-precision floating-point version of our 
example.
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Inner Loop

%rax %xmm0%rdx%rbp

load
mul
add
cmp

jg

%rax %rdx%rbp

mulss (%rax,%rdx,4), %xmm0

addq $1,%rdx

cmpq %rdx,%rbp

jg loop

%xmm0



These are Figures 5.14 a and b of Bryant and O’Hallaron.

Since the values in %rax and %rbp don't change during the execution of the inner loop, they're not critical to the 
scheduling and timing of the instructions. Assuming the branch is taken, the cmp and jg instructions also aren't a 
factor in determining the timing of the instructions. We focus on what's shown in the righthand portion of the slide.

CS33 Intro to Computer Systems XVI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data-Flow Graphs of Inner Loop
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Here we modify the graph of the previous slide to show the relative times required of mul, load, and add.
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Relative Execution Times
%xmm0 %rdx

%rdx%xmm0

data[i]

load

mul

add



This is Figure 5.15 of Bryant and O’Hallaron.
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Data Flow Over 
Multiple Iterations
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Without pipelining, the data flow would appear as shown in the slide.
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Pipelined Data-Flow Over Multiple 
Iterations

load

mul

mul

add

load

mul

add

add

load



The loads depend only on the computation of the array index, which is quickly done by addition units. Thus, the loads 
can be pipelined.
It’s clear that the multiplies form the critical path, since they use the results of the previous multiplies.

CS33 Intro to Computer Systems XVI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple 
Iterations

load

mul

mul

mul

add

load

add

add

load



The loads depend only on the computation of the array index, which is quickly done by addition units. Thus, the loads 
can be pipelined.
It’s clear that the multiplies form the critical path, since they use the results of the previous multiplies.
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Supplied by CMU.

Since the multiplies form the critical path, here we focus only on them. In what's shown here, only one multiply can be 
done at a time, since the result of the one multiply is needed for the next.
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Combine4 = Serial Computation (OP = *)
• Computation (length=8)

 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3]) 
* d[4]) * d[5]) * d[6]) * d[7])

• Sequential dependence
– performance: determined by latency of OP
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Supplied by CMU.

CS33 Intro to Computer Systems XVI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loop Unrolling

• Perform 2x more useful work per iteration

void unroll2x(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
 x = x OP d[i];
    }
    *dest = x;
}



Supplied by CMU.
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Effect of Loop Unrolling

• Helps integer add
– reduces loop overhead

• Others don’t improve. Why?
– still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Latency bound 1.0 3.0 3.0 5.0
Throughput 
bound

0.25 1.0 1.0 0.5



Supplied by CMU.
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Loop Unrolling with Reassociation

• Can this change the result of the computation?
• Yes, for FP. Why?

void unroll2xra(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
 x = x OP (d[i] OP d[i+1]);
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
 x = x OP d[i];
    }
    *dest = x;
}

x = (x OP d[i]) OP d[i+1];

Compare to before



Supplied by CMU.

How much time is required to compute the products shown in the slide? The multiplications in the upper right of the 
tree, directly involving the di, could all be done at once, since there are no dependencies; thus, computing them can be 
done in D cycles, where D is the latency required for multiply. This assumes we have a sufficient number of functional 
units to do this, thus this is a lower bound. The multiplications in the lower left must be done sequentially, since each 
depends on the previous; thus, computing them requires (N/2)*D cycles. Since the first of the top right multiplies must 
be completed before the bottom left multiplies can start, the overall performance has a lower bound of (N/2 + 1)*D.
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Reassociated Computation
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Supplied by CMU.
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Effect of Reassociation

• Nearly 2x speedup for int *, FP +, FP *
– reason: breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x, 
reassociate

1.01 1.51 1.51 2.51

Latency bound 1.0 3.0 3.0 5.0
Throughput 
bound

.25 1.0 1.0 .5



Supplied by CMU.

Here one "accumulator" (x0) is summing the array elements with even indices, the other (x1) is summing array 
elements with odd indices.
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Loop Unrolling with Separate 
Accumulators

• Different form of reassociation

void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x0 = x0 OP d[i];
       x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
 x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}



Supplied by CMU.

CS33 Intro to Computer Systems XVI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Effect of Separate Accumulators

• 2x speedup (over unroll 2x) for int *, FP +, FP *
– breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x, 
reassociate

1.01 1.51 1.51 2.51

Unroll 2x parallel 2x .81 1.51 1.51 2.51
Latency bound 1.0 3.0 3.0 5.0
Throughput bound .25 1.0 1.0 .5



Supplied by CMU.
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Separate Accumulators
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 x1 = x1 OP d[i+1];

• What changed:
• two independent “streams” of 

operations

• Overall Performance
• N elements, D cycles latency/op
• should be (N/2+1)*D cycles:

CPE = D/2
• Integer addition improved, but 

not yet at predicted value

What Now?
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Quiz 1

Weʼre making progress. With two accumulators 
we get a two-fold speedup. With three 
accumulators, we can get a three-fold speedup. 
How much better performance can we expect if 
we add even more accumulators?

a) It keeps on getting better as we add more 
and more accumulators

b) Itʼs limited by the latency bound
c) Itʼs limited by the throughput bound
d) Itʼs limited by something else



This is Figure 5.30 from the textbook.
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Based on a slide supplied by CMU.
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Achievable Performance
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5



Based on a slide supplied by CMU.

SSE stands for “streaming SIMD extensions”. SIMD stands for “single instruction multiple data” – these are 
instructions that operate on vectors.
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Using Vector Instructions

• Make use of SSE Instructions
– parallel operations on multiple data elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable Scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5
Achievable Vector .05 .24 .25 .16
Vector throughput 
bound

.06 .12 .25 .12



One way of improving the utilization of the functional units of a processor is hyperthreading. The processor supports 
multiple instruction streams ("hyper threads"), each with its own instruction control. But all the instruction streams 
share the one set of functional units.
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Going a step further, one can pack multiple complete processors onto one chip. Each processor is known as a core 
and can execute instructions independently of the other cores (each has its private set of functional units). In addition 
to each core having its own instruction and data cache, there are caches shared with the other cores on the chip. We 
discuss this in more detail in a subsequent lecture.

In many of today's processor chips, hyperthreading is combined with multiple cores. Thus, for example, a chip might 
have four cores each with four hyperthreads. Thus, the chip might handle 16 instruction streams.
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Most of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook 
“Computer Systems: A Programmer’s Perspective,” 2nd Edition and are provided from the website of Carnegie-Mellon 
University, course 15-213, taught by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.

This is the first of two lectures on memory hierarchy. The second, covering secondary storage (disk, etc.) will be given 
in a few weeks.
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CS 33
Memory Hierarchy I



Supplied by CMU.
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Random-Access Memory (RAM)
• Key features

– RAM is traditionally packaged as a chip
– basic storage unit is normally a cell (one bit per cell)
– multiple RAM chips form a memory

• Static RAM (SRAM)
– each cell stores a bit with a four- or six-transistor circuit
– retains value indefinitely, as long as it is kept powered
– relatively insensitive to electrical noise (EMI), radiation, etc.
– faster and more expensive than DRAM

• Dynamic RAM (DRAM)
– each cell stores bit with a capacitor; transistor is used for access
– value must be refreshed every 10-100 ms
– more sensitive to disturbances (EMI, radiation,…) than SRAM
– slower and cheaper than SRAM



Supplied by CMU.
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SRAM vs DRAM Summary

Trans. Access Needs Needs  
 per bit  time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
      frame buffers

• EDC = error detection and correction
• to cope with noise, etc.



Supplied by CMU.

Note that the chip in the slide contains 16 supercells of 8 bits each. The supercells are organized as a 4x4 array.
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Conventional DRAM Organization
• d x w DRAM:

– dw total bits organized as d supercells of size w 
bits
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Supplied by CMU.
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Reading DRAM Supercell (2,1)
Step 1(a): row access strobe (RAS) selects row 2
Step 1(b): row 2 copied from DRAM array to row buffer
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Supplied by CMU.
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Reading DRAM Supercell (2,1)
Step 2(a): column access strobe (CAS) selects column 1
Step 2(b): supercell (2,1) copied from buffer to data lines, and 

eventually back to the CPU
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Supplied by CMU.

The memory controller pulls in eight supercells from eight DRAM modules and transfers them to the processor over 
the memory bus.
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Memory Modules

: supercell (i,j)

64 MB  
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
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bits
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bits
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48-55

bits
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64-bit doubleword

031 78151623243263 394047485556



Adapted from a slide supplied by CMU.
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Enhanced DRAMs
• Basic DRAM cell has not changed since its invention in 

1966
– commercialized by Intel in 1970

• DRAMs with better interface logic and faster I/O:
– synchronous DRAM (SDRAM or SDR)

» uses a conventional clock signal instead of asynchronous control
» allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

– double data-rate synchronous DRAM (DDR SDRAM)
» DDR1

• twice as fast: 16 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR2

• 4 times as fast: 32 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR3

• 8 times as fast: 64 consecutive bytes xfrʼd as fast as 8 in SDR



This slide is based on figures from What Every Programmer Should Know About Memory 
(http://www.akkadia.org/drepper/cpumemory.pdf), by Ulrich Drepper. It’s an excellent article on memory and caching.

It is costly to make DRAM cell arrays run at a faster rate. Thus, rather than speed up the operation of the individual modules, they 
are organized to transfer in parallel. Thus, all that needs to be sped up is the bus that carries the data (something that is relatively 
inexpensive to do).

With SDR (Single Data-Rate DRAM), the DRAM cell array produces data at the same frequency as the memory bus, sending data on 
the rising edge of the signal.

With DDR1 (double data-rate), data is sent twice as fast by “double-pumping” the bus: sending data on both the rising and falling 
edges of the signal. To get data out of the cell array at this speed, data from two adjacent supercells are produced at once. These are 
buffered so that one doubleword at a time can be transmitted over the bus.

With DDR2, the frequency of the memory bus is doubled, and four supercells are produced at once. DDR3 takes this one step 
further, with eight supercells being produced at once. DDR4 takes this a step further and delivers 16 supercells at once.

Note that the processor fetches and stores 64 bytes of data at a time (for reasons having to do with caching, which we cover later in 
this lecture).
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Enhanced DRAMs

DRAM 
Cell 

Array

f
SDR: n B/sec

f
DRAM 

Cell 
Array

I/O 
Buffer

DDR1: 2n B/sec

DRAM 
Cell 

Array

I/O 
Buffer

2f
DDR2: 4n B/sec

DRAM 
Cell 

Array

I/O 
Buffer

4f
DDR3: 8n B/sec



DDR4 memory became available in 2015. It's 16 times as fast as SDRAM, but transfers 64 consecutive bytes at a time, 
the same as DDR3. DDR5 is currently being discussed.
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DDR4

• Memory transfer speed increased by a factor 
of 16 (twice as fast as DDR3)
– no increase in DRAM Cell Array speed (same as 

SDR)
– 16 times more data transferred at once

» 64 adjacent bytes fetched from DRAM
• just like DDR3
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Quiz 2

A program is loading randomly selected bytes 
from memory. These bytes will be delivered to 
the processor on a DDR4 system at a speed 
thatʼs n times that of an SDR system, where n 
is:

a) 8
b) 4
c) 2
d) 1
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A Mismatch

• A processor clock cycle is ~0.3 nsecs
– Older SunLab machines (Intel Core i5-4690) run at 

3.5 GHz
• Basic operations take 1 – 10 clock cycles

– .3 – 3 nsecs
• Accessing memory takes 70-100 nsecs
• How is this made to work?



Sitting between the processor and RAM are one or more caches. (They actually are on the chip along with the 
processor.) Recently accessed items by the processor reside in the cache, where they are much more quickly accessed 
than directly from memory. The processor does a certain amount of pre-fetching to get things from RAM before they 
are needed. This involves a certain amount of guesswork, but works reasonably well, given well behaved programs.
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Caching to the Rescue

CPU

Cache



Supplied by CMU.

"ALU" (arithmetic and logic unit) is a traditional term for the instruction and execution units of a processor.
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Cache Memories

• Cache memories are small, fast SRAM-based memories 
managed automatically in hardware
– hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), 
then in main memory

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memories



Supplied by CMU.
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10



Supplied by CMU.
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!



Supplied by CMU.
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• placement policy:

determines where b goes
• replacement policy:

determines which block
gets evicted (victim)



Supplied by CMU.
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General Caching Concepts: 
Types of Cache Misses

• Cold (compulsory) miss
– cold misses occur because the cache is empty

• Conflict miss
– most caches limit blocks to a small subset (sometimes a 

singleton) of the block positions in RAM
» e.g., block i in RAM must be placed in block (i mod 4) in the cache

– conflict misses occur when the cache is large enough, but 
multiple data objects all map to the same cache block
» e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

• Capacity miss
– occurs when the set of active cache blocks (working set) is 

larger than the cache



Supplied by CMU.

CS33 Intro to Computer Systems XVI–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit



Supplied by CMU.
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset



Supplied by CMU.
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set



Supplied by CMU.
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Example: Direct Mapped Cache (E = 1)
Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag



Supplied by CMU.
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Example: Direct Mapped Cache (E = 1)
Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced



Supplied by CMU.
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Direct-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3



Supplied by CMU.
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j



Note that the cache holds two rows of the matrix; each cache block holds four doubles. When a[0][0] is read, so are 
a[0][1] through a[0][3]. Thus, after one cache miss, we get three hits.
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a0,4 a0,5 a0,6 a0,7

a0,8 a0,9 a0,10 a0,11

a0,12 a0,13 a0,14 a0,15

a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15



For each reference to an element of the matrix, its entire row is brought into the cache, even though the rest of the row 
is not immediately used.
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3



If arrays x and y have the same alignment, i.e., both start in the same cache set, then each access to an element of y 
replaces the cache line containing the corresponding element of x, and vice versa. The result is that the loop is 
executed very slowly — each access to either array results in a conflict miss.
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Conflict Misses: Aligned

double dotprod(double x[8], double y[8]) {

  double sum = 0.0;

  int i;

  for (i=0; i<8; i++)

    sum += x[i] * y[i];

  return sum;

}

32 B = 4 doubles

x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y1 y2 y3y0x0 x1 x2 x3y0 y1 y2 y3



However, if the two arrays start in different cache sets, then the loop executes quickly — there is a cache miss on just 
every fourth access to each array.
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Different Alignments

double dotprod(double x[8], double y[8]) {

  double sum = 0.0;

  int i;

  for (i=0; i<8; i++)

    sum += x[i] * y[i];

  return sum;

}

32 B = 4 doubles

x0 x1 x2 x3

y0 y1 y2 y3x4 x5 x6 x7

y4 y5 y6 y7


