
CS33 Intro to Computer Systems XVI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and Optimization (3)

CS33 Intro to Computer Systems XVI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The program so far
void combine4(vec_ptr_t v, data_t *dest){
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 –O1 12.0 12.0 12.0 13.0
Combine4 2.0 3.0 3.0 5.0

Can we do better?

CS33 Intro to Computer Systems XVI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

CS33 Intro to Computer Systems XVI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Instruction characteristics

Instruction Latency Cycles/Issue Capacity
Integer Add 1 1 4
Integer Multiply 3 1 1
Integer/Long Divide 3-30 3-30 1
Single/Double FP Add 3 1 1
Single/Double FP Multiply 5 1 2
Single/Double FP Divide 3-15 3-15 1

Load 4 1 2
Store - 1 2

CS33 Intro to Computer Systems XVI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Haswell CPU Performance Bounds

Integer Floating Point
 + * + *
Latency 1.00 3.00 3.00 5.00
Throughput 4.00 1.00 1.00 2.00

CS33 Intro to Computer Systems XVI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

x86-64 Compilation of Combine4

• Inner loop (case: SP floating-point multiply)

.L519: # Loop:
 mullss (%rax,%rdx,4), %xmm0 # t = t * d[i]
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
 jg .L519 # If >, goto Loop

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Latency bound 1.00 3.00 3.00 5.0

Throughput
bound

0.25 1.00 1.00 0.50

CS33 Intro to Computer Systems XVI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Inner Loop

%rax %xmm0%rdx%rbp

load
mul
add
cmp

jg

%rax %rdx%rbp

mulss (%rax,%rdx,4), %xmm0

addq $1,%rdx

cmpq %rdx,%rbp

jg loop

%xmm0

CS33 Intro to Computer Systems XVI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data-Flow Graphs of Inner Loop

%xmm0 %rdx

load

mul add

cmp

jg

%rdx%xmm0

%rax %rbp

%xmm0 %rdx

%rdx%xmm0

data[i]
load

mul add

CS33 Intro to Computer Systems XVI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relative Execution Times
%xmm0 %rdx

%rdx%xmm0

data[i]

load

mul

add

CS33 Intro to Computer Systems XVI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data Flow Over
Multiple Iterations

data[0]
load

mul add

data[1]
load

mul add

data[n-2]
load

mul add

•
•
•

•
•
•

•
•
•

Critical path

data[n-1]
load

mul add

CS33 Intro to Computer Systems XVI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

add

load

mul

add

add

load

CS33 Intro to Computer Systems XVI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

CS33 Intro to Computer Systems XVI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

CS33 Intro to Computer Systems XVI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Combine4 = Serial Computation (OP = *)
• Computation (length=8)

 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

• Sequential dependence
– performance: determined by latency of OP

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

CS33 Intro to Computer Systems XVI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loop Unrolling

• Perform 2x more useful work per iteration

void unroll2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

CS33 Intro to Computer Systems XVI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Effect of Loop Unrolling

• Helps integer add
– reduces loop overhead

• Others don’t improve. Why?
– still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

0.25 1.0 1.0 0.5

CS33 Intro to Computer Systems XVI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Reassociation

• Can this change the result of the computation?
• Yes, for FP. Why?

void unroll2xra(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = x OP (d[i] OP d[i+1]);
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

x = (x OP d[i]) OP d[i+1];

Compare to before

CS33 Intro to Computer Systems XVI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reassociated Computation

• What changed:
– ops in the next iteration can

be started early (no
dependency)

• Overall Performance
– N elements, D cycles

latency/op
– should be (N/2+1)*D cycles:

CPE = D/2
– measured CPE slightly

worse for integer addition
(there are other things going
on)

*

*

1

*

*

*

d1d0

*

d3d2

*

d5d4

*

d7d6

x = x OP (d[i] OP d[i+1]);

CS33 Intro to Computer Systems XVI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Effect of Reassociation

• Nearly 2x speedup for int *, FP +, FP *
– reason: breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.51

Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

.25 1.0 1.0 .5

CS33 Intro to Computer Systems XVI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Separate
Accumulators

• Different form of reassociation

void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

CS33 Intro to Computer Systems XVI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Effect of Separate Accumulators

• 2x speedup (over unroll 2x) for int *, FP +, FP *
– breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.51

Unroll 2x parallel 2x .81 1.51 1.51 2.51
Latency bound 1.0 3.0 3.0 5.0
Throughput bound .25 1.0 1.0 .5

CS33 Intro to Computer Systems XVI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

• What changed:
• two independent “streams” of

operations

• Overall Performance
• N elements, D cycles latency/op
• should be (N/2+1)*D cycles:

CPE = D/2
• Integer addition improved, but

not yet at predicted value

What Now?

CS33 Intro to Computer Systems XVI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

Weʼre making progress. With two accumulators
we get a two-fold speedup. With three
accumulators, we can get a three-fold speedup.
How much better performance can we expect if
we add even more accumulators?

a) It keeps on getting better as we add more
and more accumulators

b) Itʼs limited by the latency bound
c) Itʼs limited by the throughput bound
d) Itʼs limited by something else

CS33 Intro to Computer Systems XVI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Performance

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

C
PE

Unrolling factor k

double *

double +

long *

long +

• K-way loop unrolling with K accumulators
• limited by number and throughput of functional units

CS33 Intro to Computer Systems XVI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Achievable Performance
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5

CS33 Intro to Computer Systems XVI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Vector Instructions

• Make use of SSE Instructions
– parallel operations on multiple data elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable Scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5
Achievable Vector .05 .24 .25 .16
Vector throughput
bound

.06 .12 .25 .12

CS33 Intro to Computer Systems XVI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Hyper Threading

Execution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Data
Cache

DataData

Addr. Addr.

General
Integer

Operation Results

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

CS33 Intro to Computer Systems XVI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Chip

Multiple Cores

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

More
CacheOther Stuff Other Stuff

CS33 Intro to Computer Systems XVI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Memory Hierarchy I

CS33 Intro to Computer Systems XVI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Random-Access Memory (RAM)
• Key features

– RAM is traditionally packaged as a chip
– basic storage unit is normally a cell (one bit per cell)
– multiple RAM chips form a memory

• Static RAM (SRAM)
– each cell stores a bit with a four- or six-transistor circuit
– retains value indefinitely, as long as it is kept powered
– relatively insensitive to electrical noise (EMI), radiation, etc.
– faster and more expensive than DRAM

• Dynamic RAM (DRAM)
– each cell stores bit with a capacitor; transistor is used for access
– value must be refreshed every 10-100 ms
– more sensitive to disturbances (EMI, radiation,…) than SRAM
– slower and cheaper than SRAM

CS33 Intro to Computer Systems XVI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

SRAM vs DRAM Summary

Trans. Access Needs Needs
 per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
 frame buffers

• EDC = error detection and correction
• to cope with noise, etc.

CS33 Intro to Computer Systems XVI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conventional DRAM Organization
• d x w DRAM:

– dw total bits organized as d supercells of size w
bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

CS33 Intro to Computer Systems XVI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reading DRAM Supercell (2,1)
Step 1(a): row access strobe (RAS) selects row 2
Step 1(b): row 2 copied from DRAM array to row buffer

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

CS33 Intro to Computer Systems XVI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reading DRAM Supercell (2,1)
Step 2(a): column access strobe (CAS) selects column 1
Step 2(b): supercell (2,1) copied from buffer to data lines, and

eventually back to the CPU

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

CS33 Intro to Computer Systems XVI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556

CS33 Intro to Computer Systems XVI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enhanced DRAMs

• Basic DRAM cell has not changed since its invention in
1966
– commercialized by Intel in 1970

• DRAMs with better interface logic and faster I/O:
– synchronous DRAM (SDRAM or SDR)

» uses a conventional clock signal instead of asynchronous control
» allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

– double data-rate synchronous DRAM (DDR SDRAM)
» DDR1

• twice as fast: 16 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR2

• 4 times as fast: 32 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR3

• 8 times as fast: 64 consecutive bytes xfrʼd as fast as 8 in SDR

CS33 Intro to Computer Systems XVI–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enhanced DRAMs

DRAM
Cell

Array

f
SDR: n B/sec

f
DRAM

Cell
Array

I/O
Buffer

DDR1: 2n B/sec

DRAM
Cell

Array
I/O

Buffer

2f
DDR2: 4n B/sec

DRAM
Cell

Array
I/O

Buffer

4f
DDR3: 8n B/sec

CS33 Intro to Computer Systems XVI–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

DDR4

• Memory transfer speed increased by a factor
of 16 (twice as fast as DDR3)
– no increase in DRAM Cell Array speed (same as

SDR)
– 16 times more data transferred at once

» 64 adjacent bytes fetched from DRAM
• just like DDR3

CS33 Intro to Computer Systems XVI–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

A program is loading randomly selected bytes
from memory. These bytes will be delivered to
the processor on a DDR4 system at a speed
thatʼs n times that of an SDR system, where n
is:

a) 8
b) 4
c) 2
d) 1

CS33 Intro to Computer Systems XVI–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Mismatch

• A processor clock cycle is ~0.3 nsecs
– Older SunLab machines (Intel Core i5-4690) run at

3.5 GHz
• Basic operations take 1 – 10 clock cycles

– .3 – 3 nsecs
• Accessing memory takes 70-100 nsecs
• How is this made to work?

CS33 Intro to Computer Systems XVI–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Caching to the Rescue

CPU

Cache

CS33 Intro to Computer Systems XVI–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cache Memories

• Cache memories are small, fast SRAM-based memories
managed automatically in hardware
– hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory

• Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memories

CS33 Intro to Computer Systems XVI–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

CS33 Intro to Computer Systems XVI–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

CS33 Intro to Computer Systems XVI–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• placement policy:

determines where b goes
• replacement policy:

determines which block
gets evicted (victim)

CS33 Intro to Computer Systems XVI–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Caching Concepts:
Types of Cache Misses

• Cold (compulsory) miss
– cold misses occur because the cache is empty

• Conflict miss
– most caches limit blocks to a small subset (sometimes a

singleton) of the block positions in RAM
» e.g., block i in RAM must be placed in block (i mod 4) in the cache

– conflict misses occur when the cache is large enough, but
multiple data objects all map to the same cache block
» e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

• Capacity miss
– occurs when the set of active cache blocks (working set) is

larger than the cache

CS33 Intro to Computer Systems XVI–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

CS33 Intro to Computer Systems XVI–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

CS33 Intro to Computer Systems XVI–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

CS33 Intro to Computer Systems XVI–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Direct Mapped Cache (E = 1)
Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

CS33 Intro to Computer Systems XVI–51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Direct Mapped Cache (E = 1)
Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

CS33 Intro to Computer Systems XVI–52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Direct-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

CS33 Intro to Computer Systems XVI–53 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j

CS33 Intro to Computer Systems XVI–54 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a0,4 a0,5 a0,6 a0,7

a0,8 a0,9 a0,10 a0,11

a0,12 a0,13 a0,14 a0,15

a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15

CS33 Intro to Computer Systems XVI–55 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

CS33 Intro to Computer Systems XVI–56 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conflict Misses: Aligned

double dotprod(double x[8], double y[8]) {
 double sum = 0.0;
 int i;

 for (i=0; i<8; i++)
 sum += x[i] * y[i];

 return sum;
}

32 B = 4 doubles

x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y1 y2 y3y0x0 x1 x2 x3y0 y1 y2 y3

CS33 Intro to Computer Systems XVI–57 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Different Alignments

double dotprod(double x[8], double y[8]) {
 double sum = 0.0;
 int i;

 for (i=0; i<8; i++)
 sum += x[i] * y[i];

 return sum;
}

32 B = 4 doubles

x0 x1 x2 x3

y0 y1 y2 y3x4 x5 x6 x7

y4 y5 y6 y7

