
Most of the slides in this lecture are either from or adapted from slides provided by the 
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition 
and are provided from the website of Carnegie-Mellon University, course 15-213, taught 
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.

This is the first of two lectures on memory hierarchy. The second, covering secondary 
storage (disk, etc.) will be given in a few weeks.
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CS 33
Memory Hierarchy I
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Random-Access Memory (RAM)
• Key features

– RAM is traditionally packaged as a chip
– basic storage unit is normally a cell (one bit per cell)
– multiple RAM chips form a memory

• Static RAM (SRAM)
– each cell stores a bit with a four- or six-transistor circuit
– retains value indefinitely, as long as it is kept powered
– relatively insensitive to electrical noise (EMI), radiation, etc.
– faster and more expensive than DRAM

• Dynamic RAM (DRAM)
– each cell stores bit with a capacitor; transistor is used for access
– value must be refreshed every 10-100 ms
– more sensitive to disturbances (EMI, radiation,…) than SRAM
– slower and cheaper than SRAM



Supplied by CMU.
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SRAM vs DRAM Summary

Trans. Access Needs Needs  
 per bit  time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
      frame buffers

• EDC = error detection and correction
• to cope with noise, etc.
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Note that the chip in the slide contains 16 supercells of 8 bits each. The supercells are 
organized as a 4x4 array.

CS33 Intro to Computer Systems XVII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conventional DRAM Organization
• d x w DRAM:

– dw total bits organized as d supercells of size w 
bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)
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Reading DRAM Supercell (2,1)
Step 1(a): row access strobe (RAS) selects row 2
Step 1(b): row 2 copied from DRAM array to row buffer

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller
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Reading DRAM Supercell (2,1)
Step 2(a): column access strobe (CAS) selects column 1
Step 2(b): supercell (2,1) copied from buffer to data lines, and 

eventually back to the CPU

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
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To CPU
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The memory controller pulls in eight supercells from eight DRAM modules and transfers 
them to the processor over the memory bus.
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Memory Modules

: supercell (i,j)

64 MB  
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556



Adapted from a slide supplied by CMU.
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Enhanced DRAMs

• Basic DRAM cell has not changed since its invention in 
1966
– commercialized by Intel in 1970

• DRAMs with better interface logic and faster I/O:
– synchronous DRAM (SDRAM or SDR)

» uses a conventional clock signal instead of asynchronous control
» allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

– double data-rate synchronous DRAM (DDR SDRAM)
» DDR1

• twice as fast: 16 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR2

• 4 times as fast: 32 consecutive bytes xfrʼd as fast as 8 in SDR
» DDR3

• 8 times as fast: 64 consecutive bytes xfrʼd as fast as 8 in SDR



This slide is based on figures from What Every Programmer Should Know About 
Memory (http://www.akkadia.org/drepper/cpumemory.pdf), by Ulrich Drepper. It’s an 
excellent article on memory and caching.

It is costly to make DRAM cell arrays run at a faster rate. Thus, rather than speed up 
the operation of the individual modules, they are organized to transfer in parallel. Thus, 
all that needs to be sped up is the bus that carries the data (something that is relatively 
inexpensive to do).

With SDR (Single Data-Rate DRAM), the DRAM cell array produces data at the same 
frequency as the memory bus, sending data on the rising edge of the signal.

With DDR1 (double data-rate), data is sent twice as fast by “double-pumping” the bus: 
sending data on both the rising and falling edges of the signal. To get data out of the cell 
array at this speed, data from two adjacent supercells are produced at once. These are 
buffered so that one doubleword at a time can be transmitted over the bus.

With DDR2, the frequency of the memory bus is doubled, and four supercells are 
produced at once. DDR3 takes this one step further, with eight supercells being 
produced at once. DDR4 takes this a step further and delivers 16 supercells at once.

Note that the processor fetches and stores 64 bytes of data at a time (for reasons having 
to do with caching, which we cover later in this lecture).
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Enhanced DRAMs
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DDR4 memory became available in 2015. It's 16 times as fast as SDRAM, but transfers 
64 consecutive bytes at a time, the same as DDR3. DDR5 is currently being discussed.
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DDR4

• Memory transfer speed increased by a factor 
of 16 (twice as fast as DDR3)
– no increase in DRAM Cell Array speed (same as 

SDR)
– 16 times more data transferred at once

» 64 adjacent bytes fetched from DRAM
• just like DDR3
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Quiz 2

A program is loading randomly selected bytes 
from memory. These bytes will be delivered to 
the processor on a DDR4 system at a speed 
thatʼs n times that of an SDR system, where n 
is:

a) 8
b) 4
c) 2
d) 1
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A Mismatch

• A processor clock cycle is ~0.3 nsecs
– Older SunLab machines (Intel Core i5-4690) run at 

3.5 GHz
• Basic operations take 1 – 10 clock cycles

– .3 – 3 nsecs
• Accessing memory takes 70-100 nsecs
• How is this made to work?



Sitting between the processor and RAM are one or more caches. (They actually are on 
the chip along with the processor.) Recently accessed items by the processor reside in 
the cache, where they are much more quickly accessed than directly from memory. The 
processor does a certain amount of pre-fetching to get things from RAM before they are 
needed. This involves a certain amount of guesswork, but works reasonably well, given 
well behaved programs.
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Caching to the Rescue

CPU

Cache



Supplied by CMU.

"ALU" (arithmetic and logic unit) is a traditional term for the instruction and execution 
units of a processor.
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Cache Memories

• Cache memories are small, fast SRAM-based memories 
managed automatically in hardware
– hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), 
then in main memory

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memories
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• placement policy:

determines where b goes
• replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
Types of Cache Misses

• Cold (compulsory) miss
– cold misses occur because the cache is empty

• Conflict miss
– most caches limit blocks to a small subset (sometimes a 

singleton) of the block positions in RAM
» e.g., block i in RAM must be placed in block (i mod 4) in the cache

– conflict misses occur when the cache is large enough, but 
multiple data objects all map to the same cache block
» e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

• Capacity miss
– occurs when the set of active cache blocks (working set) is 

larger than the cache



Supplied by CMU.
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General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit



Supplied by CMU.
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset
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Direct-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j



Note that the cache holds two rows of the matrix; each cache block holds four doubles. 
When a[0][0] is read, so are a[0][1] through a[0][3]. Thus, after one cache miss, we get 
three hits.
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a0,4 a0,5 a0,6 a0,7

a0,8 a0,9 a0,10 a0,11

a0,12 a0,13 a0,14 a0,15

a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15



For each reference to an element of the matrix, its entire row is brought into the cache, 
even though the rest of the row is not immediately used.
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A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)

sum += a[i][j];
return sum;

}

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3



If arrays x and y have the same alignment, i.e., both start in the same cache set, then 
each access to an element of y replaces the cache line containing the corresponding 
element of x, and vice versa. The result is that the loop is executed very slowly — each 
access to either array results in a conflict miss.
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Conflict Misses: Aligned

double dotprod(double x[8], double y[8]) {

  double sum = 0.0;

  int i;

  for (i=0; i<8; i++)

    sum += x[i] * y[i];

  return sum;

}

32 B = 4 doubles

x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y1 y2 y3y0x0 x1 x2 x3y0 y1 y2 y3



However, if the two arrays start in different cache sets, then the loop executes quickly — 
there is a cache miss on just every fourth access to each array.
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Different Alignments

double dotprod(double x[8], double y[8]) {

  double sum = 0.0;

  int i;

  for (i=0; i<8; i++)

    sum += x[i] * y[i];

  return sum;

}

32 B = 4 doubles

x0 x1 x2 x3

y0 y1 y2 y3x4 x5 x6 x7

y4 y5 y6 y7



Many of the slides in this lecture are either from or adapted from slides provided by the 
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition 
and are provided from the website of Carnegie-Mellon University, course 15-213, taught 
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.
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CS 33
Exploiting Caches



Supplied by CMU.

The L3 cache is known as the last-level cache (LLC) in the Intel documentation.

One concern is whether what's contained in, say, the L1 cache is also contained in the 
L2 cache. if so, caching is said to be inclusive. If what's contained in the L1 cache is 
definitely not contained in the L2 cache, caching is said to be exclusive. An advantage 
of exclusive caches is that the total cache capacity is the sum of the sizes of each of the 
levels, whereas for inclusive caches, the total capacity is just that of the largest. An 
advantage of inclusive caches is that what's been brought into the cache hierarchy by 
one core is available to the other cores.

AMD processors tend to have exclusive caches; Intel processors tend to have inclusive 
caches.
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Intel Core i5 and i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way, 
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for 
all caches



Supplied by CMU.

Most current processors use the write-back/write-allocate approach. This causes some 
(surmountable) difficulties for multi-core processors that have a separate cache for each 
core.
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What About Writes?

• Multiple copies of data exist:
– L1, L2, main memory, disk

• What to do on a write-hit?
– write-through (write immediately to memory)
– write-back (defer write to memory until replacement of line)

» need a dirty bit (line different from memory or not)

• What to do on a write-miss?
– write-allocate (load into cache, update line in cache)

» good if more writes to the location follow
– no-write-allocate (writes immediately to memory)

• Typical
– write-through + no-write-allocate
– write-back + write-allocate



This slide describes accessing memory on Intel Core I5 and I7 processors.

If the processor determines that a program is accessing memory sequentially (because 
the past few accesses have been sequential), then it begins the load of the next block 
from memory before it is requested. If this determination was correct, then the memory 
will be in the cache (or well on its way) before it's needed.
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Accessing Memory

• Program references memory (load)
– if not in cache (cache miss), data is requested from 

RAM
» fetched in units of 64 bytes

• aligned to 64-byte boundaries (low-order 6 bits of 
address are zeroes)

» if memory accessed sequentially, data is pre-fetched
» data stored in cache (in 64-byte cache lines)

• stays there until space must be re-used (least 
recently used is kicked out first)

– if in cache (cache hit) no access to RAM needed
• Program modifies memory (store)

– data modified in cache
– eventually written to RAM in 64-byte units



Supplied by CMU.
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Cache Performance Metrics
• Miss rate

– fraction of memory references not found in cache
(misses / accesses)
= 1 – hit rate

– typical numbers (in percentages):
» 3-10% for L1
» can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
– time to deliver a line in the cache to the processor

» includes time to determine whether the line is in the cache
– typical numbers:

» 1-2 clock cycles for L1
» 5-20 clock cycles for L2

• Miss penalty
– additional time required because of a miss

» typically 50-200 cycles for main memory (trend: increasing!)



Supplied by CMU.
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Hits vs. Misses

• Huge difference between hit and miss times
– could be 100x, if just L1 and main memory

• 99% hit rate is twice as good as 97%!
– consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

– average access time:
  97% hits:  .97 * 1 cycle + 0.03 * 100 cycles ≈ 4 cycles
  99% hits:  .99 * 1 cycle + 0.01 * 100 cycles ≈ 2 cycles

• This is why “miss rate” is used instead of “hit 
rate”



Supplied by CMU.
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Locality

• Principle of Locality: programs tend to use 
data and instructions with addresses near or 
equal to those they have used recently

• Temporal locality:  
– recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
– items with nearby addresses tend 

to be referenced close together in time



Supplied by CMU.
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Locality Example

• Data references
– reference array elements in 

succession (stride-1 reference 
pattern)

– reference variable sum each iteration
• Instruction references

– reference instructions in sequence.
– cycle through loop repeatedly

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality
Temporal locality



Supplied by CMU.
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Quiz 2

Does this function have good locality with 
respect to array a? The array a is MxN.

a) yes
b) no

int sum_array_cols(int N, int a[][N]) {
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}



Supplied by CMU.

“Stride n” reference patterns are sequences of memory accesses in which every nth 
element is accessed in memory order. Thus stride 1 means that every element is 
accessed, starting at the beginning of a memory area, continuing to its end.
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Writing Cache-Friendly Code

• Make the common case fast
– focus on the inner loops of the core functions

• Minimize the misses in the inner loops
– repeated references to variables are good (temporal locality)
– stride-1 reference patterns are good (spatial locality)



Based on slides supplied by CMU.
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Matrix Multiplication Example

• Description:
– multiply N x N 

matrices
» each element is a 

double
– O(N3) total operations
– N reads per source 

element
– N values summed per 

destination
» but may be able to 

hold in register

/* ijk */

for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;

    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;

  }

} 

Variable sum
held in register

/* ikj */

for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];

    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];

  }

}



Adapted form a slide by CMU.
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Miss-Rate Analysis for Matrix Multiply

• Assume:
– Block size = 64B (big enough for eight doubles)
– matrix dimension (N) is very large
– cache is not big enough to hold multiple rows

• Analysis method:
– look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= *



Supplied by CMU.
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Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
– each row in contiguous memory locations

• Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements
– if block size (B) > 8 bytes, exploit spatial locality

» compulsory miss rate = 8 bytes / Block

• Stepping through rows in one column:
– for (i = 0; i < n; i++)

sum += a[i][0];

– accesses widely separated elements
– no spatial locality!

» compulsory miss rate = 1 (i.e. 100%)



Supplied by CMU.

Assume we are multiplying arrays of doubles, thus each element is eight bytes long, and 
thus a cache line holds eight matrix elements. The slide shows a straightforward 
implementation of multiplying A and B to produce C.
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;

    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }
} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
  A B C
  0.125 1.0 0.0



Supplied by CMU.

If we reverse the order of the two outer loops, there's no change in results or 
performance.
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Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;

    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
  A B C
  0.125 1.0 0.0



Supplied by CMU.

Moving the loop on k to be the outer loop does not affect the result, but it improves 
performance.
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];

    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];   
  }

}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
  A B C
  0.0 0.125 0.125



Supplied by CMU.

Switching the two outer loops affects neither results nor performance.
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];

  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
  A B C
  0.0 0.125 0.125



Supplied by CMU.

Moving the loop on i to be the inner loop makes performance considerably worse.

CS33 Intro to Computer Systems XVII–52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];

    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
  A B C
  1.0 0.0 1.0



Supplied by CMU.

The poor performance is not improved by reversing the outer loops.
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];

    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
  A B C
  1.0 0.0 1.0



Supplied by CMU.
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.125

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.25

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++)

  for (j=0; j<n; j++) {
   sum = 0.0;
   for (k=0; k<n; k++) 
     sum += a[i][k] * b[k][j];
   c[i][j] = sum;
  }

for (k=0; k<n; k++)

 for (i=0; i<n; i++) {
  r = a[i][k];
  for (j=0; j<n; j++)
   c[i][j] += r * b[k][j];   
  }

for (j=0; j<n; j++)

 for (k=0; k<n; k++) {
   r = b[k][j];
   for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
 }



Supplied by CMU.
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Core i7 Matrix Multiply Performance
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In Real Life ...

• Multiply two 1024x1024 matrices of doubles 
on core i5 machines (formerly in the Sunlab)

– ijk
» 4.185 seconds

– kij
» 0.798 seconds

– jki
» 11.488 seconds



Supplied by CMU.
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Concluding Observations

• Programmer can optimize for cache 
performance
– organize data structures appropriately

• All systems favor “cache-friendly code”
– getting absolute optimum performance is very 

platform specific
» cache sizes, line sizes, associativities, etc.

– can get most of the advantage with generic code
» keep working set reasonably small (temporal locality)
» use small strides (spatial locality)
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CS 33
Architecture and the OS



CS33 Intro to Computer Systems XVII–59 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Operating System

OS

My Program Mary’s
Program

Bob’s
Program
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Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!
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Idiot Proof …

My Program Mary’s
Program

int main( ) {
  int i;
  int A[1];

  for (i=0; ; i++)
    A[rand()] = i;
}

Can I clobber
Mary’s
program?
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Fair Share

My Program Bob’s
Program

void runforever( ){
  while(1)
    ;
}
  
int main( ) {
  runforever();
}

Can I
prevent Bob’s 
program from 
running?
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Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions
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Which Instructions Should Be 
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...
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Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in 
privileged mode
– nothing else does
– not even super user on Unix or administrator on 

Windows
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Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)
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Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention from external sources

• Exceptions
– executing program requires attention



These definitions follow those given in “Intel® 64 and IA-32 Architectures Software 
Developer’s Manual” and are generally accepted even outside of Intel.
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Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next 

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to 

next instruction
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Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on 

stack
– processor switches to privileged mode (if not 

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action 

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current 
instruction
» thread/process state is restored, after backing up 

instruction pointer
– if thread/process is to terminate

» it’s terminated
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Interrupt and Exception Handlers

• Interrupt or exception 
invokes handler (in OS)
– via interrupt and exception 

vector
» one entry for each possible 

interrupt/exception
• contains

– address of handler
– code executed in privileged 

mode
» but code is part of the OS

handler 0 addr

handler 1 addr

handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i



The reason why there must be a separate stack in privileged mode is that the OS must 
be guaranteed that when it is executing, it has a valid stack, and that the stack pointer 
must be pointing to a region of memory that can be used as a stack by the OS. Since 
while the program was running in user mode any value could have been put into the 
stack-pointer register, when the OS is invoked, it switches to a pre-allocated stack set 
up just for it.
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Entering and Exiting

• Entering/exiting interrupt/exception handler 
more involved than entering/exiting a function
– must deal with processor mode

» switch to privileged mode on entry
» switch back to previous mode on exit

– interrupted process/threadʼs state is saved on 
separate kernel stack

– stack in kernel must be different from stack in user 
program
» why?



When a trap or interrupt occurs, the current processor state (registers, including RIP, 
condition codes, etc.) are saved on the kernel stack. When the system returns back to 
the interrupted program, this state is restored.
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One Stack Per Mode

Frame 1

Frame 2

Frame 3

Intrp/Excp
Frame

Frame 4

Frame 5

user stack kernel stack
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Quiz 3

If an interrupt occurs, which general-purpose 
registers must be pushed onto the kernel 
stack?

a) all
b) none
c) callee-save registers
d) caller-save registers


