CS 33

Memory Hierarchy |

CS33 Intro to Computer Systems XVIil-1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Random-Access Memory (RAM)

« Key features
— RAM is traditionally packaged as a chip
— basic storage unit is normally a cell (one bit per cell)
— multiple RAM chips form a memory

- Static RAM (SRAM)
— each cell stores a bit with a four- or six-transistor circuit
— retains value indefinitely, as long as it is kept powered
— relatively insensitive to electrical noise (EMI), radiation, etc.
— faster and more expensive than DRAM

 Dynamic RAM (DRAM)
— each cell stores bit with a capacitor; transistor is used for access
— value must be refreshed every 10-100 ms
— more sensitive to disturbances (EMI, radiation,...) than SRAM
— slower and cheaper than SRAM

CS33 Intro to Computer Systems XVII-2

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost

Applications

SRAM 4or6 1X No Maybe 100x

DRAM 1 10X Yes Yes 1X

Cache memories

Main memories,
frame buffers

« EDC = error detection and correction
 to cope with noise, etc.

CS33 Intro to Computer Systems XVII-3

Conventional DRAM Organization

 d xw DRAM:

— dw total bits organized as d supercells of size w

bits
16x8DRAMchip
cols
0 1 2 3 :
2bits ! 0
- > !
addr ¢ :
: 1 |
<> rows 5
Memory : 2 - supercell
controller ! — 21
(to/from CPU) ! ’
8bits ! £
< ' »: !
data :
Internal row buffer i
CS33 Intro to Computer Systems T _)_(_/_ll-_-4_ ______________________________

Reading DRAM Supercell (2,1)

Step 1(a): row access strobe (RAS) selects row 2
Step 1(b): row 2 copied from DRAM array to row buffer

16x8DRAMchip
Cols
RAS=2 | : 1 2 3
— 0
addr :
! 1
Memory EROWS
controller 2 — — — —
8 ! 3
— e e e
data | N/ \/ \/ \/

CS33 Intro to Computer Systems XVII-5

Reading DRAM Supercell (2,1)

Step 2(a): column access strobe (CAS) selects column 1

Step 2(b): supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU

To CPU

supercell
(2,1)

Memory
controller

16x8DRAMchip
' Cols
CAS = 1 0 1 2 3
; 0
addr
i 1
' Rows
i 2
8 3
—
o ’%
supercell

(2.1

Internal row buffer

CS33 Intro to Computer Systems

\&= 1)

Memory Modules

addr (row = i, col = j)
O : supercell (i,j)
| | DRAM)
—— - 64 MB
[I I [l memory module
I DRAM ¥ I n 1 consisting of
ol © T eight 8Mx8 DRAMs
] .

bits bits bits bits bits bits Dbits bits
56-63 48-55 40-47 32-39 24-31 16-23 8-15 0-7

63 56 55 4847 4039 3231 2423 1615 8 7 0

Memory
controller

64-bit doubleword at main memory address A

64-bit doubleword

CS33 Intro to Computer Systems \AE

Enhanced DRAMs

 Basic DRAM cell has not changed since its invention in
1966

— commercialized by Intel in 1970

« DRAMs with better interface logic and faster 1/O:

— synchronous DRAM (SDRAM or SDR)
» uses a conventional clock signal instead of asynchronous control
» allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
— double data-rate synchronous DRAM (DDR SDRAM)
» DDR1
 twice as fast: 16 consecutive bytes xfr'd as fast as 8 in SDR
» DDR2
4 times as fast: 32 consecutive bytes xfr'd as fast as 8 in SDR
» DDR3
8 times as fast: 64 consecutive bytes xfr’'d as fast as 8 in SDR

CS33 Intro to Computer Systems XVII-8

Enhanced DRAMs

f
DRAM y y 3 3] SDR: n B/sec
Cell
Array
f
DEQIM I/O AL RV J DDR1: 2n Bisec
Buffer
Array
2f
DRAM o | RV DDR2: 4n Bisec
€ Buffer
Array
4f
Dgl’l‘l"" /O DDR3: 8n Bisec
€ Buffer
Array

CS33 Intro to Computer Systems XVII-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

DDR4

 Memory transfer speed increased by a factor
of 16 (twice as fast as DDR3)

— no increase in DRAM Cell Array speed (same as
SDR)

— 16 times more data transferred at once

» 64 adjacent bytes fetched from DRAM
* just like DDR3

CS33 Intro to Computer Systems XVII-10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

A program is loading randomly selected bytes
from memory. These bytes will be delivered to
the processor on a DDR4 system at a speed
that’s n times that of an SDR system, where n
is:

a) 8
b) 4
c) 2
d) 1

CS33 Intro to Computer Systems XVII-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Mismatch

A processor clock cycle is ~0.3 nsecs

— Older SunLab machines (Intel Core i5-4690) run at
3.5 GHz

Basic operations take 1 — 10 clock cycles
— .3 -3 nsecs

Accessing memory takes 70-100 nsecs
How is this made to work?

CS33 Intro to Computer Systems XVIil-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Caching to the Rescue

CPU

Cache

CS33 Intro to Computer Systems XVIil-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cache Memories

« Cache memories are small, fast SRAM-based memories
managed automatically in hardware

— hold frequently accessed blocks of main memory

« CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory

« Typical system structure:

Cache <—> ‘/ALU§
~ |memories 5

@ : System bus Memolry bus

. o L) ain
Bus interface bridge memory

CS33 Intro to Computer Systems XVIil-14

General Cache Concepts

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CS33 Intro to Computer Systems

XVII-15

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 3 2 3 Block b is in cache:
2hdris Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 00000000000 OCOCGOOGOO

CS33 Intro to Computer Systems

XVII-16

General Cache Concepts: Miss

Request: 12
Cache 8 12 14 3
12 Request: 12
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 00000000000 OCOCGOOGOO

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* placement policy:
determines where b goes

* replacement policy:
determines which block
gets evicted (victim)

CS33 Intro to Computer Systems

XVII-17

General Caching Concepts:
Types of Cache Misses

« Cold (compulsory) miss
— cold misses occur because the cache is empty

 Conflict miss

— most caches limit blocks to a small subset (sometimes a
singleton) of the block positions in RAM

» e.g., block i in RAM must be placed in block (i mod 4) in the cache

— conflict misses occur when the cache is large enough, but
multiple data objects all map to the same cache block

» e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time
« Capacity miss

— occurs when the set of active cache blocks (working set) is
larger than the cache

CS33 Intro to Computer Systems XVII-18

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

r ~N
4 -
o000
S=Zssets< ce oo
\
Cache size:
v tag ol1l21------ B-1 C =S x E x B data bytes
valid bit N~

B = 2® bytes per cache block (the data)
CS33 Intro to Computer Systems XVII-19

* Llocate set

* Check if any line in set
CaChe Read has matching tag
E = 2¢ lines per set * Yes + line valid: hit
y A ~ * Locate data starting
r at offset
o000

Address of word:

t bits s bits | b bits

S = 25 sets < e gt

oo tag set block
index offset

data begins at this offset

Vv tag 0 112 ccccee B-1

valid bit N~
B = 2P bytes per cache block (the data)

CS33 Intro to Computer Systems XVII-20

Direct-Mapped Cache Simulation

t=1 s=2 b=1 M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0@1211 hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set3 | 1 0 M[6-7]

CS33 Intro to Computer Systems XVIl-21

A Higher-Level Example

assume: cold (empty) cache,
a[0][0] goes here

int sum array rows (double a[l16][16]) |

{ 7

int i, 73;
double sum = 0;

for (1 = 0; 1 < 16; 1i++)
for (jJ = 0; j < 16; j++)
sum += ali]l[]J];
return sum;

int sum array cols(double a[l6][16])

int i, 73;
double sum = 0;

\ J
Y

32 B = 4 doubles

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)
sum += ali]l[J];
return sum;

CS33 Intro to Computer Systems XVIl-22

A Higher-Level Example

{
int i, 73;
double sum = 0;
for (1 = 0; 1 < 16; 1i++)
for (J = 0; 7 < 16; J++)
sum += al[i][]];
return sum;
}

int sum array rows (double a[l6][16])

32 B = 4 doubles

CS33 Intro to Computer Systems XVII-23

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example

2,0
CEX)
int sum array cols(double a[l6][16])
{
int 1, j;
double sum = O0;
\ ~ J/
for (3 = 07 3 < 167 144) 32 B = 4 doubles

for (i = 0; i < 16; j++)
sum += ali][]J];
return sum;

CS33 Intro to Computer Systems XVII-24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Conflict Misses: Aligned

double dotprod(double x[8], double y[8]) {
double sum = 0.0;

int i;

Yol Yi] Y211Y3

for (i=0; i<8; i++)

sum += x[1] * y[1];

return sum;

& J
Y

32 B = 4 doubles

CS33 Intro to Computer Systems XVII-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Different Alignments

double dotprod(double x[8], double y[8]) {
double sum = 0.0;

int i;

x
o
x
=
x
N
x
w

X
s
x
(0,]
X
()]
x
~N
e e S—

<
B
<
(6,
<
()]
<
~N

for (i=0; i<8; i++)

sum += x[1] * y[1];

return sum;

& J
Y

32 B = 4 doubles

CS33 Intro to Computer Systems XVII-26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33

Exploiting Caches

CS33 Intro to Computer Systems XVII-35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Intel Core i5 and i7 Cache Hierarchy

Processor package

__

L1

d-cache

L1

i-cache

cache

L2 unified

L1

d-cache

L1

i-cache

cache

L2 unified

L3 unified cache

(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches

CS33 Intro to Computer Systems

XVII-36

What About Writes?

Multiple copies of data exist:
— L1, L2, main memory, disk

What to do on a write-hit?

— write-through (write immediately to memory)
— write-back (defer write to memory until replacement of line)
» need a dirty bit (line different from memory or not)

What to do on a write-miss?

— write-allocate (load into cache, update line in cache)
» good if more writes to the location follow

— no-write-allocate (writes immediately to memory)
Typical

— write-through + no-write-allocate

— write-back + write-allocate

CS33 Intro to Computer Systems XVII-37

Accessing Memory

* Program references memory (load)
— if not in cache (cache miss), data is requested from
RAM
» fetched in units of 64 bytes

- aligned to 64-byte boundaries (low-order 6 bits of
address are zeroes)

» if memory accessed sequentially, data is pre-fetched
» data stored in cache (in 64-byte cache lines)

- stays there until space must be re-used (least
recently used is kicked out first)

— if in cache (cache hit) no access to RAM needed

 Program modifies memory (store)
— data modified in cache
— eventually written to RAM in 64-byte units

CS33 Intro to Computer Systems XVII-38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cache Performance Metrics

 Miss rate

— fraction of memory references not found in cache
(misses / accesses)
=1 - hit rate
— typical numbers (in percentages):
» 3-10% for L1
» can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit time
— time to deliver a line in the cache to the processor
» includes time to determine whether the line is in the cache

— typical numbers:
» 1-2 clock cycles for L1
» 5-20 clock cycles for L2

* Miss penalty

— additional time required because of a miss
» typically 50-200 cycles for main memory (trend: increasing!)

CS33 Intro to Computer Systems XVII-39

Hits vs. Misses

* Huge difference between hit and miss times
— could be 100x, if just L1 and main memory

* 99% hit rate is twice as good as 97%!

— consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

— average access time:
97% hits: .97 * 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: .99 * 1 cycle + 0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit
rate”

CS33 Intro to Computer Systems XVII-40

Locality

* Principle of Locality: programs tend to use
data and instructions with addresses near or
equal to those they have used recently

\/

 Temporal locality:

— recently referenced items are likely
to be referenced again in the near future

C /

« Spatial locality:

— items with nearby addresses tend
to be referenced close together in time

CS33 Intro to Computer Systems XVIl-41

Locality Example

sum
for

= 0;
(1 =
sum += af[i];

return sum;

0; 1 < n; 1i++)

« Data references

— reference array elements in
succession (stride-1 reference

pattern)

Spatial locality

— reference variable sum each iteration Temporal locality
* Instruction references

— reference instructions in sequence.

— cycle through loop repeatedly

Spatial locality

Temporal locality

CS33 Intro to Computer Systems

XVIi-42

Quiz 2

Does this function have good locality with
respect to array a? The array a is MxN.

a) yes
b) no
int sum array cols(int N, int a[][N]) {
int i, j, sum = 0;

for (7 = 0; 7 < N; J++)
for (1 = 0, 1 < M; 1i++4)
sum += ali][7];
return sum;

CS33 Intro to Computer Systems XVII-43

Writing Cache-Friendly Code

 Make the common case fast
— focus on the inner loops of the core functions

 Minimize the misses in the inner loops
— repeated references to variables are good (temporal locality)
— stride-1 reference patterns are good (spatial locality)

CS33 Intro to Computer Systems XVIl-44

Matrix Multiplication Example Variable sum

/* 1ijk */

held in register
. Descripbtion: for (1i=0; i<n; i++) {
P " for (3=0; j<n; J++) { /

— multiply N x N sum = 0.0: <

matrices | Tore (e (o ledms e

» gzc;:;lement IS a sum += a[i][k] * b[k][7]1;
_ cli][J] = sum;

— O(N3) total operations
— N reads per source

element
— N values summed per /* k3

destination for (i=0; i<n; i++) {

» but may be able to for (k=0; k<n; k++) {

hold in register

CS33 Intro to Computer Systems XVII-45

Miss-Rate Analysis for Matrix Multiply

 Assume:
— Block size = 64B (big enough for eight doubles)
— matrix dimension (N) is very large
— cache is not big enough to hold multiple rows
* Analysis method:
— look at access pattern of inner loop

C A B

CS33 Intro to Computer Systems XVII-46

Layout of C Arrays in Memory (review)

« C arrays allocated in row-major order
— each row in contiguous memory locations
« Stepping through columns in one row:
—for (i = 0; 1 < N; 1i++)
sum += al[0] [1];
— accesses successive elements
— if block size (B) > 8 bytes, exploit spatial locality
» compulsory miss rate = 8 bytes / Block
« Stepping through rows in one column:
—for (i = 0; 1 < n; 1i++)
sum += a[i][0];
— accesses widely separated elements
— no spatial locality!
» compulsory miss rate =1 (i.e. 100%)

CS33 Intro to Computer Systems XVIIl-47

Matrix Multiplication (ijk)

/* 13k %/ Inner loop:
for (i=0; i<n; i++) {

for (k=0; k<n; k++)
sum += al[i][k] * b[k][J];

c[1][J] = sum; ‘ ‘ ‘

Row-wise Column- Fixed
wise

for (31=0; j3<n; J++) { o .
sum = 0.0; g(l *) (Iij)
A B

Misses per inner loop iteration:

A B C

0.125 1.0 0.0

CS33 Intro to Computer Systems XVII-48

Matrix Multiplication (jik)

/* Jik */ Inner loop:
for (j=0; j<n; J++) {

k<n; k++)
sum += a[i][k] * b[k][J];

c[i][J] = sum ‘ ‘ ‘

Row-wise Column- Fixed
wise

for (i=0; i<n; i++) { *
sum = 0.0; L;;;J - (QD
for (k=0; (i,%)
A B

Misses per inner loop iteration:

A B C

0.125 1.0 0.0

CS33 Intro to Computer Systems XVII-49

Matrix Multiplication (Kkij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) Efffj(K*)L;;;J :
F o= a2l 5l = (i,%)
B C

for (J=0; j<n; J++) A
c[i] [§] += r * bkl []]; ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.125 0.125

CS33 Intro to Computer Systems XVII-50

Matrix Multiplication (ikj)

/* 1kj */
for (i=0; i<n; 1i++) {

for (k=0; k<n; k++) { (i,k) E(k,*)g
r = al[il [k]; 0 (i,*)
B C

for (3=0; j<n; J++) A
c[i][j] += r * bkl [F]; ‘ \ \

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.125 0.125

CS33 Intro to Computer Systems XVII-51

Matrix Multiplication (jki)

TETTY, Inner loop:
for (3=0; j<n; j++) { (*,k) (*,))
for (k=0; k<n; k++) ({ ” (k.j) H
r = blk][]j]; =
for (i=0; i<n; i++) A B C
cli][9] += al[il[k] * z; ‘ ‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

CS33 Intro to Computer Systems XVII-52

Matrix Multiplication (kj

r:

/* kji */
for (k=0; k<n; k++) {

for (3=0; I<n; J++) { ::fiT)
blk][3];
(1
1]

]
=0; 1i<n; 1i++) A
c[i][J] += ali1][k] * r; ‘
Column-
wise

Misses per inner loop iteration:

A

1.0

B C

0.0 1.0

Inner loop:

(k,j)
[

B

|

Fixed

CS33 Intro to Computer Systems XVII-53

for (i=0; i<n; i++)
for (J=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][J];

c[i][J] = sum;

k<n; k++)
; 1<n; i++) |

for (3=0; j<n; j++)
for (k=0; k<n; k++) {
r = blk][J];
for (i=0; i<n; i++)
c[i][3] += alillk] * r;
}

Summary of Matrix Multiplication

ijk (& jik):
e 2 loads, O stores
e misses/iter = 1.125

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.25

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0

CS33 Intro to Computer Systems

XVII-54

Cycles per inner loop iteration

Core i7 Matrix Multiply Performance

60

jki / kji
P—P—P—k—bH
50 ﬁ/@———% X X B

40
—-jKi
=kii
><ijk

% ik

I Kij
ijk / jik ;ik'
S~ : : J
20

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n)

CS33 Intro to Computer Systems XVII-55

In Real Life ...

* Multiply two 1024x1024 matrices of doubles
on core i5 machines (formerly in the Sunlab)

—ijk

» 4.185 seconds

— Kij

» 0.798 seconds

— jki
» 11.488 seconds

CS33 Intro to Computer Systems XVII-56 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Concluding Observations

 Programmer can optimize for cache
performance

— organize data structures appropriately

« All systems favor “cache-friendly code”

— getting absolute optimum performance is very
platform specific

» cache sizes, line sizes, associativities, etc.

— can get most of the advantage with generic code
» keep working set reasonably small (temporal locality)
» use small strides (spatial locality)

CS33 Intro to Computer Systems XVII-57

CS 33

Architecture and the OS

CS33 Intro to Computer Systems XVII-58 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Operating System

Mary’s Bob’s

O [P Program Program

0S

CS33 Intro to Computer Systems XVII-59 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Processes

« Containers for programs

— virtual memory
» address space
— scheduling
» one or more threads of control
— file references
» open files
— and lots more!

CS33 Intro to Computer Systems XVII-60 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Idiot Proof ...

Can | clobber

Mary’s
program?
int main() {
int 1i;
int A[1l];
Mary’s
for (i=0; ; 1i++) Program

Alrand ()] = 1i;

CS33 Intro to Computer Systems XVII-61 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fair Share

Can I
prevent Bob’s

_ program from
void runforever () { running?

while (1)

°
4

Bob’s

int main() { Program

runforever () ;

CS33 Intro to Computer Systems XVII-62 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

* Not all instructions are created equal ...
— non-privileged instructions
» can affect only current program

— privileged instructions
» may affect entire system

* Processor mode
— user mode
» can execute only non-privileged instructions

— privileged mode
» can execute all instructions

CS33 Intro to Computer Systems XVII-63 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be
Privileged?

I/O instructions
Those that affect how memory is mapped
Halt instruction
Some others ...

CS33 Intro to Computer Systems XVIl-64 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

 No one
— user code always runs in user mode
* The operating-system kernel runs in
privileged mode
— nothing else does

— not even super user on Unix or administrator on
Windows

CS33 Intro to Computer Systems XVII-65 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

* Howis OS invoked?

— very carefully ...
— strictly in response to interrupts and exceptions
— (booting is a special case)

CS33 Intro to Computer Systems XVII-66 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

* Things don’t always go smoothly ...
— 1/O devices demand attention
— timers expire
— programs demand OS services
— programs demand storage be made accessible
— programs have problems
* Interrupts
— demand for attention from external sources

 Exceptions
— executing program requires attention

CS33 Intro to Computer Systems XVII-67 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exceptions

* Traps
— “intentional” exceptions
» execution of special instruction to invoke OS

— after servicing, execution resumes with next
instruction

* Faults
— a problem condition that is normally corrected
— after servicing, instruction is re-tried

 Aborts

— something went dreadfully wrong ...

— not possible to re-try instruction, nor to go on to
next instruction

CS33 Intro to Computer Systems XVII-68 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

 When interrupt or exception occurs

— processor saves state of current thread/process on
stack

— processor switches to privileged mode (if not
already there)

— invokes handler for interrupt/exception

— if thread/process is to be resumed (typical action
after interrupt)

» thread/process state is restored from stack

— if thread/process is to re-execute current
instruction

» thread/process state is restored, after backing up
instruction pointer

— if thread/process is to terminate
» it’s terminated

CS33 Intro to Computer Systems XVII-69 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

intrpt/excp
_ i
Interrupt or exception
invokes handler (in OS) handler 0 addr
— via interrupt and exception handler 1 addr
vector handler 2 addr
» one entry for each possible
interrupt/exception
« contains
—address of handler handler i addr
— code executed in privileged
mode
» but code is part of the OS
handler n-1 addr

handler i

CS33 Intro to Computer Systems XVII-70 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Entering and Exiting

* Entering/exiting interrupt/exception handler
more involved than entering/exiting a function

— must deal with processor mode
» switch to privileged mode on entry
» switch back to previous mode on exit

— interrupted process/thread’s state is saved on
separate kernel stack

— stack in kernel must be different from stack in user
program

» why?

CS33 Intro to Computer Systems XVII-71 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

One Stack Per Mode

Frame 1 Intrp/Excp
Frame
Frame 2
Frame 4

Frame 3

. Frame 5

v Y

user stack kernel stack

CS33 Intro to Computer Systems XVII-72 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

If an interrupt occurs, which general-purpose
registers must be pushed onto the kernel
stack?

a) all

b) none

c) callee-save registers
d) caller-save registers

CS33 Intro to Computer Systems XVII-73 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

