
CS33 Intro to Computer Systems XVIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS

CS33 Intro to Computer Systems XVIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Operating System

OS

My Program Mary’s
Program

Bob’s
Program

CS33 Intro to Computer Systems XVIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!

CS33 Intro to Computer Systems XVIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Idiot Proof …

My Program Mary’s
Program

int main() {
 int i;
 int A[1];

 for (i=0; ; i++)
 A[rand()] = i;
}

Can I clobber
Mary’s
program?

CS33 Intro to Computer Systems XVIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fair Share

My Program Bob’s
Program

void runforever(){
 while(1)
 ;
}

int main() {
 runforever();
}

Can I
prevent Bob’s
program from
running?

CS33 Intro to Computer Systems XVIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions

CS33 Intro to Computer Systems XVIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...

CS33 Intro to Computer Systems XVIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in
privileged mode

– nothing else does
– not even super user on Unix or administrator on

Windows

CS33 Intro to Computer Systems XVIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)

CS33 Intro to Computer Systems XVIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention from external sources

• Exceptions
– executing program requires attention

These definitions follow those given in “Intel® 64 and IA-32 Architectures Software
Developer’s Manual” and are generally accepted even outside of Intel.

CS33 Intro to Computer Systems XVIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to

next instruction

CS33 Intro to Computer Systems XVIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on

stack
– processor switches to privileged mode (if not

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current
instruction
» thread/process state is restored, after backing up

instruction pointer
– if thread/process is to terminate

» it’s terminated

CS33 Intro to Computer Systems XVIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

• Interrupt or exception
invokes handler (in OS)

– via interrupt and exception
vector
» one entry for each possible

interrupt/exception
• contains

– address of handler
– code executed in privileged

mode
» but code is part of the OS

handler 0 addr
handler 1 addr
handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i

CS33 Intro to Computer Systems XVIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>

int main() {

 pid_t pid;

 if ((pid = fork()) == 0) {

 /* new process starts

 running here */

 }

 /* old process continues

 here */

}

The only way to create a new process is to use the fork system call.

CS33 Intro to Computer Systems XVIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

By executing fork the parent process creates an almost exact clone of itself that we call
the child process. This new process executes the same text as its parent, but contains a
copy of the data and a copy of the stack. This copying of the parent to create the child
can be very time-consuming if done naively. Some tricks are employed to make it much
less so.

Fork is a very unusual system call: one thread of control flows into it but two threads of
control flow out of it, each in a separate address space. From the parent’s point of view,
fork does very little: nothing happens to the parent except that fork returns the process
ID (PID — an integer) of the new process. The new process starts off life by returning
from fork, which it sees as returning a zero.

CS33 Intro to Computer Systems XVIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XVIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;

int main() {

 while (flag == 0) {

 if (fork() == 0) {

 // in child process

 flag = 1;

 exit(0); // causes process to terminate

 }

 }

}

The getpid function returns the caller’s process ID.

The parent process executes the second printf; the child process executes the
first printf.

CS33 Intro to Computer Systems XVIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process IDs

int main() {
 pid_t pid;
 pid_t ParentPid = getpid();

 if ((pid = fork()) == 0) {
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
 }
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
}

parent prints:
 27355, 27342, 27342

child prints:
 0, 27342, 27355

CS33 Intro to Computer Systems XVIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
 execv("prog",
 argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
 execv("prog", argv);
}

.

.

.

.

.

.

fork

execv

We will use the convention that the name of the program, as given in argv[0] is
the last component of the file’s pathname.

Note that a null pointer, termed a sentinel, is used to indicate the end of the
list of arguments.

CS33 Intro to Computer Systems XVIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
–we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
 execv("./MyProg", argv);
}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

Most of the time the purpose of creating a new process is to run a new (i.e., different)
program. Once a new process has been created, it can use one of the exec system calls
to load a new program image into itself, replacing the prior contents of the process’s
address space. Exec is passed the name of a file containing an executable program
image. The previous text region of the process is replaced with the text of the program
image. The data, BSS and dynamic areas of the process are “thrown away” and replaced
with the data and BSS of the program image. The contents of the process’s stack are
replaced with the arguments that are passed to the main procedure of the program.

CS33 Intro to Computer Systems XVIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

The argument argv is what was provided to execv. The argument argc is the
number of elements of argv (i.e., the number of arguments, including argv[0]).

CS33 Intro to Computer Systems XVIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)

 printf("%d\n", rand());
 return 0;

}

CS33 Intro to Computer Systems XVIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

}

CS33 Intro to Computer Systems XVIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};

 execv("./random", argv);
 printf("random done\n");

}
The printf statement will be
executed

a) always
b) only if execv fails
c) only if execv succeeds

Note that argv[0] is the name by which the program is invoked. argv[1] is the
first “real” argument. In this program, argv[2] will contain the NULL pointer (0).
arrgc is two, indicating two arguments (argv[0] and argv[1]).

CS33 Intro to Computer Systems XVIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());

 return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XVIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
 char *argv = {"random", "12", (void *)0};

 execv("./random", argv);
}
/* what does the shell do here??? */

There’s a variant of waitpid, called wait, that waits for any child of the current
process to terminate.

CS33 Intro to Computer Systems XVIII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>

…
 pid_t pid;

 int status;
 …
 if ((pid = fork()) == 0) {

 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 }
 waitpid(pid, &status, 0);

The exit code is used to indicate problems that might have occurred while
running a program. The convention is that an exit code of 0 means success;
other values indicate some sort of error. Note that if the main function returns,
it returns to code that calls exit; thus, returning from main is equivalent to
calling exit. The argument passed to exit in this case is the value returned by
main.

CS33 Intro to Computer Systems XVIII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid_t pid;
 int status;
 if ((pid = fork()) == 0) {
 if (do_work() == 1)
 exit(0); /* success! */
 else
 exit(1); /* failure … */
 }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
 WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XVIII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};

 execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};

 execv("who", argv);

}

…

System calls, such as fork, execv, read, write, etc., are the only means for application
programs to communicate directly with the OS kernel: they form an API (application
program interface) to the kernel. When a program calls such a function, it is actually
placing a call to a function in a system library. The body of this function contains a
hardware-specific trap instruction that transfers control and some parameters to the
kernel. On return to the library function, the kernel provides an indication of whether or
not there was an error and what the error was. The error indication is passed back to
the original caller via the functional return value of the library function: If there was an
error, the function returns -1 and a positive-integer code identifying the error is stored
in the global variable errno. Rather than simply print this code out, as shown in the
slide, one might instead print out an informative error message. This can be done via the
perror function.

The “hardware-specific trap instruction” is (or used to be) the “int” (interrupt) instruction
on the x86. However, this instruction is now considered too expensive for such
performance-critical operations as system calls. A new facility, known as “syscall/sysret”
was introduced with the Pentium II processors (in 1997) and has been used by operating
systems (including Windows and Linux) ever since. Its description is beyond the scope of
this course.

CS33 Intro to Computer Systems XVIII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap

instructions to enter kernel
• Errors indicated by returns of –1; error code is in

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}

CS33 Intro to Computer Systems XVIII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion
of address
space

Kernel portion
of address
space

Each process has its own user address space, but there’s a single kernel address space.
It contains context information for each user process, including the stacks used by each
process when executing system calls.

CS33 Intro to Computer Systems XVIII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text

CS33 Intro to Computer Systems XVIII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

This information is from Wikipedia.

CS33 Intro to Computer Systems XVIII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

This information is also from Wikipedia.

CS Department computers run Debian Linux (and thus weren't affected by shellshock).

Our examples use bash syntax.

CS33 Intro to Computer Systems XVIII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XVIII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

Most programs perform file I/O using library code layered on top of system calls. In this
section we discuss just the kernel aspects of file I/O, looking at the abstraction and the
high-level aspects of how this abstraction is implemented.

The Unix file abstraction is very simple: files are simply arrays of bytes. Some systems
have special system calls to make a file larger. In Unix, you simply write where you’ve
never written before, and the file “magically” grows to the new size (within limits). The
names of files are equally straightforward — just the names labeling the path that leads
to the file within the directory tree. Finally, from the programmer’s point of view, all
operations on files appear to be synchronous — when an I/O system call returns, as far
as the process is concerned, the I/O has completed. (Things are different from the
kernel’s point of view.) Another important property of files is permanence: they continue
to exist until explicitly deleted.

Note that there are numerous issues in implementing the Unix file abstraction that we
do not cover in this course. In particular, we do not discuss what is done to lay out files
on disks (both rotating and solid-state) so as to take maximum advantage of their
architectures. Nor do we discuss the issues that arise in coping with failures and
crashes. What we concentrate on here are those aspects of the file abstraction that are
immediately relevant to application programs.

CS33 Intro to Computer Systems XVIII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

The notion that almost everything in Unix has a path name was a startlingly new
concept when Unix was first developed; one that has proved to be important. We discuss
this in more detail in the next lecture.

CS33 Intro to Computer Systems XVIII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

Given the name of a file, one uses open to get a file descriptor that will refer to that file
when performing operations on it. One calls close to tell the system one is no longer
using that file descriptor. The read and write system calls perform the indicated
operation on the file, using a buffer described by their second two arguments. By
default, read and write operations go through a file from beginning to end sequentially.
The lseek system call is used to specify where in a file the next read or write will take
place.

ssize_t (“signed size”) is a typedef for long and represents the number of bytes that were
transferred. It’s signed so as to allow -1 as a return value, which indicates an error. off_t
is also a typedef for long and represents an offset from some position in the file (the
starting position is given by the whence argument to lseek).

CS33 Intro to Computer Systems XVIII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)

• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

The file descriptors 0, 1, and 2 are set up before a process starts. File descriptor 0 refers
to input (the keyboard, by default). Descriptors 1 and 2 are for output: normal output
goes to file descriptor 1, error messages go to file descriptor 2. By default, this output
goes to the current window.

We’ll soon see a way to print more informative error messages than the one given here.

CS33 Intro to Computer Systems XVIII–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

C programs often do I/O via the standard I/O library (known as stdio), which provides
both buffering and formatting.

CS33 Intro to Computer Systems XVIII–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

The streams stdin, stdout, and stderr are automatically set up to refer to data from/to
file descriptors 0, 1, and 2, respectively.

CS33 Intro to Computer Systems XVIII–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h

FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

The stdout stream is buffered. This means that characters written to stdout are copied
into a buffer. Only when either a newline is output or the capacity of the buffer is
reached are the characters actually written to the display (via a call to write). The reason
for doing things this way is to reduce the number of (relatively expensive) calls to write.

CS33 Intro to Computer Systems XVIII–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

The stderr stream is not buffered. Thus characters output to it are immediately written
to the display.

CS33 Intro to Computer Systems XVIII–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

