
CS33 Intro to Computer Systems XVIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS
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The Operating System

OS

My Program Mary’s
Program

Bob’s
Program
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Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!
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Idiot Proof …

My Program Mary’s
Program

int main( ) {
  int i;
  int A[1];

  for (i=0; ; i++)
    A[rand()] = i;
}

Can I clobber
Mary’s
program?
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Fair Share

My Program Bob’s
Program

void runforever( ){
  while(1)
    ;
}
  
int main( ) {
  runforever();
}

Can I
prevent Bob’s 
program from 
running?
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Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions
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Which Instructions Should Be 
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...



CS33 Intro to Computer Systems XVIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in 
privileged mode

– nothing else does
– not even super user on Unix or administrator on 

Windows
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Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)
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Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention from external sources

• Exceptions
– executing program requires attention
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Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next 

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to 

next instruction
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Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on 

stack
– processor switches to privileged mode (if not 

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action 

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current 
instruction
» thread/process state is restored, after backing up 

instruction pointer
– if thread/process is to terminate

» it’s terminated
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Interrupt and Exception Handlers

• Interrupt or exception 
invokes handler (in OS)

– via interrupt and exception 
vector
» one entry for each possible 

interrupt/exception
• contains

– address of handler
– code executed in privileged 

mode
» but code is part of the OS

handler 0 addr

handler 1 addr

handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i
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Creating Your Own Processes

#include <unistd.h>
int main( ) {
 pid_t pid;
 if ((pid = fork()) == 0) {
  /* new process starts

     running here */

 }
 /* old process continues

    here */

}
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Creating a Process: Before

fork( )

parent process
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Creating a Process: After

fork( )
// returns p

parent process

fork( )
// returns 0

child process 
(pid = p)
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Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;
int main() {
  while (flag == 0) {
    if (fork() == 0) {
 // in child process

      flag = 1;

      exit(0);  // causes process to terminate
    }

  }

}
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Process IDs

int main( ) {
 pid_t pid;
 pid_t ParentPid = getpid();

 if ((pid = fork()) == 0) {
  printf("%d, %d, %d\n",
   pid, ParentPid, getpid());
  return 0;
 }
 printf("%d, %d, %d\n",
   pid, ParentPid, getpid());
  return 0;
}

parent prints:
  27355, 27342, 27342

child prints:
  0, 27342, 27355
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if (fork() == 0){
  execv("prog",
    argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
  execv("prog", argv);
}

.

.

.

.

.

.

fork

execv
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Exec

• Family of related system functions
– we concentrate on one:

» execv(program,  argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) { 
  execv("./MyProg", argv);
}

argv[0] is the name 
of the program

Name of the file that 
contains the program

First “real” 
argument

End of 
list
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Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After
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A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
  }
  int stop = atoi(argv[1]);
  for (int i = 0; i < stop; i++)
    printf("%d\n", rand());
  return 0;
}
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Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
  char *argv[] = {"random", "12", (void *)0};
  execv("./random", argv);

}
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Quiz 2
if (fork() == 0) {
  char *argv[] = {"random", "12", (void *)0};
  execv("./random", argv);

  printf("random done\n");
}

The printf statement will be 
executed

a) always
b) only if execv fails
c) only if execv succeeds
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Receiving Arguments
int main(int argc, char *argv[]) {
  if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
  }
  int stop = atoi(argv[1]);
  for (int i = 0; i < stop; i++)
    printf("%d\n", rand());

  return 0;
}

1 2 \0

r a n d o m \0

argv
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Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
  char *argv = {"random", "12", (void *)0};
  execv("./random", argv);

}
/* what does the shell do here??? */
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Wait

#include <unistd.h>
#include <sys/wait.h>
…

  pid_t pid;
  int status;
  …
  if ((pid = fork()) == 0) {
    char *argv[] = {"random", "12", (void *)0};
    execv("./random", argv);

  }

 waitpid(pid, &status, 0);
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Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main( ) {
  pid_t pid;
  int status;
  if ((pid = fork()) == 0) {
    if (do_work() == 1)
      exit(0); /* success! */
    else
      exit(1); /* failure … */
  }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
     WEXITSTATUS(status) extracts it */

exit code
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Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {
   char *argv[] = {"who", 0};
   execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {
   char *argv[] = {"who", 0};
   execv("who", argv);

}

…
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System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap 

instructions to enter kernel
• Errors indicated by returns of –1; error code is in 

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}
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System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion 
of address 
space

Kernel portion 
of address 
space
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kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text
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CS 33
Shells and Files
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Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer
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More Shells 

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability
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Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2
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The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its 

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent
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Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.
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I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor, 
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor, 
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor, 
offset, whence)
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Standard File Descriptors

int main( ) {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
  if (write(1, buf, n) != n) {
   write(2, note, strlen(note));
   exit(1);
  }
 return(0);
}
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Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…
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Standard I/O

FILE *stdin;        // declared in stdio.h
FILE *stdout;       // declared in stdio.h
FILE *stderr;       // declared in stdio.h

scanf("%d", &in);   // read via f.d. 0

printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

     // write via f.d. 2
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Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y
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Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y


