
CS33 Intro to Computer Systems XVIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS

CS33 Intro to Computer Systems XVIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Operating System

OS

My Program Mary’s
Program

Bob’s
Program

CS33 Intro to Computer Systems XVIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!

CS33 Intro to Computer Systems XVIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Idiot Proof …

My Program Mary’s
Program

int main() {
 int i;
 int A[1];

 for (i=0; ; i++)
 A[rand()] = i;
}

Can I clobber
Mary’s
program?

CS33 Intro to Computer Systems XVIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fair Share

My Program Bob’s
Program

void runforever(){
 while(1)
 ;
}

int main() {
 runforever();
}

Can I
prevent Bob’s
program from
running?

CS33 Intro to Computer Systems XVIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions

CS33 Intro to Computer Systems XVIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...

CS33 Intro to Computer Systems XVIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in
privileged mode

– nothing else does
– not even super user on Unix or administrator on

Windows

CS33 Intro to Computer Systems XVIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)

CS33 Intro to Computer Systems XVIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention from external sources

• Exceptions
– executing program requires attention

CS33 Intro to Computer Systems XVIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to

next instruction

CS33 Intro to Computer Systems XVIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on

stack
– processor switches to privileged mode (if not

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current
instruction
» thread/process state is restored, after backing up

instruction pointer
– if thread/process is to terminate

» it’s terminated

CS33 Intro to Computer Systems XVIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

• Interrupt or exception
invokes handler (in OS)

– via interrupt and exception
vector
» one entry for each possible

interrupt/exception
• contains

– address of handler
– code executed in privileged

mode
» but code is part of the OS

handler 0 addr

handler 1 addr

handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i

CS33 Intro to Computer Systems XVIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>
int main() {
 pid_t pid;
 if ((pid = fork()) == 0) {
 /* new process starts

 running here */

 }
 /* old process continues

 here */

}

CS33 Intro to Computer Systems XVIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

CS33 Intro to Computer Systems XVIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XVIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;
int main() {
 while (flag == 0) {
 if (fork() == 0) {
 // in child process

 flag = 1;

 exit(0); // causes process to terminate
 }

 }

}

CS33 Intro to Computer Systems XVIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process IDs

int main() {
 pid_t pid;
 pid_t ParentPid = getpid();

 if ((pid = fork()) == 0) {
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
 }
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
}

parent prints:
 27355, 27342, 27342

child prints:
 0, 27342, 27355

CS33 Intro to Computer Systems XVIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
 execv("prog",
 argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
 execv("prog", argv);
}

.

.

.

.

.

.

fork

execv

CS33 Intro to Computer Systems XVIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
– we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
 execv("./MyProg", argv);
}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

CS33 Intro to Computer Systems XVIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

CS33 Intro to Computer Systems XVIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());
 return 0;
}

CS33 Intro to Computer Systems XVIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

}

CS33 Intro to Computer Systems XVIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 printf("random done\n");
}

The printf statement will be
executed

a) always
b) only if execv fails
c) only if execv succeeds

CS33 Intro to Computer Systems XVIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());

 return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XVIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
 char *argv = {"random", "12", (void *)0};
 execv("./random", argv);

}
/* what does the shell do here??? */

CS33 Intro to Computer Systems XVIII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>
…

 pid_t pid;
 int status;
 …
 if ((pid = fork()) == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 }

 waitpid(pid, &status, 0);

CS33 Intro to Computer Systems XVIII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid_t pid;
 int status;
 if ((pid = fork()) == 0) {
 if (do_work() == 1)
 exit(0); /* success! */
 else
 exit(1); /* failure … */
 }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
 WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XVIII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {
 char *argv[] = {"who", 0};
 execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {
 char *argv[] = {"who", 0};
 execv("who", argv);

}

…

CS33 Intro to Computer Systems XVIII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap

instructions to enter kernel
• Errors indicated by returns of –1; error code is in

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}

CS33 Intro to Computer Systems XVIII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion
of address
space

Kernel portion
of address
space

CS33 Intro to Computer Systems XVIII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text

CS33 Intro to Computer Systems XVIII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

CS33 Intro to Computer Systems XVIII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

CS33 Intro to Computer Systems XVIII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XVIII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

CS33 Intro to Computer Systems XVIII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

CS33 Intro to Computer Systems XVIII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

CS33 Intro to Computer Systems XVIII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

CS33 Intro to Computer Systems XVIII–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

CS33 Intro to Computer Systems XVIII–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

CS33 Intro to Computer Systems XVIII–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0

printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

CS33 Intro to Computer Systems XVIII–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

CS33 Intro to Computer Systems XVIII–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

