CS 33

Architecture and the OS

CS33 Intro to Computer Systems XVIi-1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Operating System

Mary’s Bob’s

O [P Program Program

0S

CS33 Intro to Computer Systems XVII-2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Processes

« Containers for programs

— virtual memory
» address space
— scheduling
» one or more threads of control
— file references
» open files
— and lots more!

CS33 Intro to Computer Systems XVII-3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Idiot Proof ...

Can | clobber

Mary’s
program?
int main() {
int 1i;
int A[1l];
Mary’s
for (i=0; ; i++) Program

Alrand ()] = 1i;

CS33 Intro to Computer Systems XVIl-4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fair Share

Can I
prevent Bob’s

_ program from
void runforever () { running?

while (1)

°
4

Bob’s

int main() { Program

runforever () ;

CS33 Intro to Computer Systems XVII-5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

* Not all instructions are created equal ...
— non-privileged instructions
» can affect only current program

— privileged instructions
» may affect entire system

* Processor mode
— user mode
» can execute only non-privileged instructions

— privileged mode
» can execute all instructions

CS33 Intro to Computer Systems XVIII-6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be
Privileged?

I/O instructions
Those that affect how memory is mapped
Halt instruction
Some others ...

CS33 Intro to Computer Systems XVII-7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

 No one
— user code always runs in user mode
* The operating-system kernel runs in
privileged mode
— nothing else does

— not even super user on Unix or administrator on
Windows

CS33 Intro to Computer Systems XVIII-8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

* Howis OS invoked?

— very carefully ...
— strictly in response to interrupts and exceptions
— (booting is a special case)

CS33 Intro to Computer Systems XVII-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

* Things don’t always go smoothly ...
— 1/O devices demand attention
— timers expire
— programs demand OS services
— programs demand storage be made accessible
— programs have problems
* Interrupts
— demand for attention from external sources

 Exceptions
— executing program requires attention

CS33 Intro to Computer Systems XVII-10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exceptions

* Traps
— “intentional” exceptions
» execution of special instruction to invoke OS

— after servicing, execution resumes with next
instruction

* Faults
— a problem condition that is normally corrected
— after servicing, instruction is re-tried

 Aborts

— something went dreadfully wrong ...

— not possible to re-try instruction, nor to go on to
next instruction

CS33 Intro to Computer Systems XVIill-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

 When interrupt or exception occurs

— processor saves state of current thread/process on
stack

— processor switches to privileged mode (if not
already there)

— invokes handler for interrupt/exception

— if thread/process is to be resumed (typical action
after interrupt)

» thread/process state is restored from stack

— if thread/process is to re-execute current
instruction

» thread/process state is restored, after backing up
instruction pointer

— if thread/process is to terminate
» it’s terminated

CS33 Intro to Computer Systems XVIll-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

intrpt/excp
_ i
Interrupt or exception
invokes handler (in OS) handler 0 addr
— via interrupt and exception handler 1 addr
vector handler 2 addr
» one entry for each possible
interrupt/exception
« contains
—address of handler handler i addr
— code executed in privileged
mode
» but code is part of the OS
handler n-1 addr

handler i

CS33 Intro to Computer Systems XVIll-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>
/' int main() {
pid t pid;
if ((pid = fork()) == 0) {
/* new process starts
running here */
,’)
| /* old process continues

I here */

CS33 Intro to Computer Systems XVIll-17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

CS33 Intro to Computer Systems XVIII-18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork() fork()

// returns p // returns O

parent process child process
(pid = p)

CS33 Intro to Computer Systems XVII-19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

The following program
a) runs forever
b) terminates quickly

int flag;
int main () {
while (flag == 0) {
if (fork() == 0) {
// in child process
flag = 1;

exit (0); // causes process to terminate

}

CS33 Intro to Computer Systems XVIIl-20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process IDs

int main() {
pid t pid;
pid t ParentPid = getpid();

parent prints:
27355, 27342, 27342

child prints:
if ((pid = fork()) == 0) { 0, 27342, 27355
printf ("%d, %d, %d\n",
pid, ParentPid, getpid());
return 0O;
}
printf ("%d, %d, %d\n",
pid, ParentPid, getpid());
return 0O;

CS33 Intro to Computer Systems XVIii-21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Putting Programs into Processes

Q
..*.
q%
/* prog */
int main () {
if (fork() == 0){

execv ("prog", argv):;

}

fork

CS33 Intro to Computer Systems XVIill-22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exec

 Family of related system functions

» execv(program, argv)

—we concentrate on one:
First “real”
argument

char *argv([] = { "@(2), (void *{0};
if (fork() == 0) | /
execv (" 4!&@
) End of
list

Name of the file that

_ argv[0] is the name
contains the program

of the program

CS33 Intro to Computer Systems XVIll-23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loading a New Image

args

T

prog’s bss
prog’s data
efecv(prog, ar
prog’s text
Before After

CS33 Intro to Computer Systems XVIil-24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Random Program ...

int main (int argc, char *argv|[]) {
if (argc != 2) {
fprintf (stderr, "Usage: random count\n");
ex1t (1) ;
}
int stop = atoi(argv[1l]);
for (int i = 0; i < stop; i++)
printf ("%d\n", rand());
return 0O;

CS33 Intro to Computer Systems XVIlI-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

* From the shell
$ random 12

* From a C program
i1f (fork() == 0) {
char *argv[] = {"random", "12", (wvoid *)O0};

execv ("./random", argv) ;

CS33 Intro to Computer Systems XVIlI-26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

if (fork() == 0) {
char *argv[] = {"random", "12", (wvoid *)O0};
execv ("./random", argv);

printf ("random done\n");

The printf statement will be
executed

a) always

b) only if execv fails

c) only if execv succeeds

CS33 Intro to Computer Systems XVIll-27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Receiving Arguments

int main (int argc, char *argv([]) {

if (argc != 2) {
fprintf (stderr, "Usage: random count\n");
exit (1),

}

int stop = atoi(argv[l]);

for (int i = 0; 1 < stop; 1i++)
printf ("$d\n", rand()):;

return 0O;

CS33 Intro to Computer Systems XVIII-28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not So Fast ...

 How does the shell invoke your program?

if (fork() == 0) {
char *argv = {"random", "12", (wvoid *)O0};
execv ("./random", argv);

}
/* what does the shell do here??2? */

CS33 Intro to Computer Systems XVIIl-29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>

#include <sys/wait.h>

pid t pid;

int status;

if ((pid = fork()) == 0) {
char *argv[] = {"random", "12", (wvoid *)O0};
execv ("./random", argv);

}
waitpid(pid, &status, 0);

CS33 Intro to Computer Systems XVII-30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exit

#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {

pid t pid;

int status;

if ((pid = fork()) == 0) |

if (do work() == 1)
exit (:

] e exit code

exit (failure ..

}
waltpid(pid, &

0)
/* low-order byte of status contains exit code.
WEXITSTATUS (status) extracts it */

statusy,

CS33 Intro to Computer Systems XVIII-31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...

S who

if ((pid
char *argv/[]

execv ("who",

}

waltpid(pid,

S who &

if ((pid
char *argv/[]

execv ("who",

fork()) ==

)

{

{"who", 0};

argv) ;

&status,

fork()) ==

)

0)

{

{"who", 0};

argv) ;

CS33 Intro to Computer Systems

XVIll-32

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

 Sole direct interface between user and kernel

* Implemented as library functions that execute trap
instructions to enter kernel

* Errors indicated by returns of —1; error code is in
global variable errno

1f (write(fd, buffer, bufsize) == -1) {
// error!
printf ("error %d\n", errno);
// see perror

CS33 Intro to Computer Systems XVII-33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

System Calls

other stuff

kernel stack

v

} kernel text

L 4

/ I

trap into kernel

\

2

N~ write(fd, buf, len)

—

Kernel portion
of address
space

User portion
of address
space

CS33 Intro to Computer Systems XVIilI-34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Processes

kernel data

other stuff

kernel stack

L 2

other stuff

kernel stack

L 2

other stuff

kernel stack

v

kernel text

> <

> <

> <
> <

CS33 Intro to Computer Systems

XVIII-35

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33

Shells and Files

CS33 Intro to Computer Systems XVII-36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

y
\' .
Shells (e L \

Command and scripting languages for Unix

First shell: Thompson shell
— sh, developed by Ken Thompson
— released in 1971

Bourne shell

— also sh, developed by Steve Bourne
— released in 1977

C shell

— csh, developed by Bill Joy
— released in 1978
— tcsh, improved version by Ken Greer

CS33 Intro to Computer Systems XVIII-37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Shells .) ‘/l
4d }\:'/' A~

 Bourne-Again Shell
— bash, developed by Brian Fox
— released in 1989

— found to have a serious security-related bug in 2014
» shellshock

« Almquist Shell

— ash, developed by Kenneth Almquist

— released in 1989

— similar to bash

— dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XVIII-38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Roadmap

 We explore the file abstraction
— what are files
— how do you use them
— how does the OS represent them

 We explore the shell
— how does it launch programs } <hell 1
— how does it connect programs with files
— how does it control running programs } shell 2

CS33 Intro to Computer Systems XVII-39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

« A file is a simple array of bytes

A file is made larger by writing beyond its
current end

* Files are named by paths in a naming tree
« System calls on files are synchronous
* Files are permanent

CS33 Intro to Computer Systems XVII-40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

* (almost) everything has a path name
— files
— directories
— devices (known as special files)
» keyboards
» displays
» disks
» etc.

CS33 Intro to Computer Systems XVIiill-41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

/O System Calls

e int file descriptor = open (pathname,
mode [, permissions])

* int close(file descriptor)

* ssize t count = read(file descriptor,
buffer address, buffer size)

* ssize t count = write(file descriptor,
buffer address, buffer size)

« off t position = lseek(file descriptor,
offset, whence)

CS33 Intro to Computer Systems XVIill-42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
char buf [BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read(0, buf, sizeof (buf))) > 0)

if (write(l, buf, n) != n) {
write (2, note, strlen(note));
exit (1),

}

return (0) ;

}

CS33 Intro to Computer Systems XVIill-43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard /O Library

Formatting < printf > < scanf >

Buffering | | stdin | [stdout | [stderr |

Syscalls

CS33 Intro to Computer Systems XVIill-44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard 1/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h
scanf ("%d", &in); // read via f.d. 0

printf ("%d\n", in); // write via f.d. 1
fprintf (stderr, "there was an error\n");
// write via f.d. 2

CS33 Intro to Computer Systems XVIill-45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

printf ("xy");
printf("zz");
printf ("y\n") ;

X|yl|lz|z|y|\n buffer

Xyzzy
display

CS33 Intro to Computer Systems XVIill-46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output

fprintf (stderr, "xy");

fprintf (stderr, "zz");

fprintf (stderr, "y\n");

Xyzzy

display

CS33 Intro to Computer Systems

XVill-47

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

