
CS33 Intro to Computer Systems XIX–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS (2)

CS33 Intro to Computer Systems XIX–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Recap: Creating Your Own Processes

#include <unistd.h>

int main() {

 pid_t pid;

 if ((pid = fork()) == 0) {

 /* new process starts

 running here */

 }

 /* old process continues

 here */

}

The only way to create a new process is to use the fork system call.

CS33 Intro to Computer Systems XIX–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

By executing fork the parent process creates an almost exact clone of itself that we call
the child process. This new process executes the same text as its parent, but contains a
copy of the data and a copy of the stack. This copying of the parent to create the child
can be very time-consuming if done naively. Some tricks are employed to make it much
less so.

Fork is a very unusual system call: one thread of control flows into it but two threads of
control flow out of it, each in a separate address space. From the parent’s point of view,
fork does very little: nothing happens to the parent except that fork returns the process
ID (PID — an integer) of the new process. The new process starts off life by returning
from fork, which it sees as returning a zero.

CS33 Intro to Computer Systems XIX–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XIX–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
 execv("prog",
 argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
 execv("prog", argv);
}

.

.

.

.

.

.

fork

execv

We will use the convention that the name of the program, as given in argv[0] is
the last component of the file’s pathname.

Note that a null pointer, termed a sentinel, is used to indicate the end of the
list of arguments.

CS33 Intro to Computer Systems XIX–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
– we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
 execv("./MyProg", argv);
}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

Most of the time the purpose of creating a new process is to run a new (i.e., different)
program. Once a new process has been created, it can use one of the exec system calls
to load a new program image into itself, replacing the prior contents of the process’s
address space. Exec is passed the name of a file containing an executable program
image. The previous text region of the process is replaced with the text of the program
image. The data, BSS and dynamic areas of the process are “thrown away” and replaced
with the data and BSS of the program image. The contents of the process’s stack are
replaced with the arguments that are passed to the main procedure of the program.

CS33 Intro to Computer Systems XIX–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

The argument argv is what was provided to execv. The argument argc is the
number of elements of argv (i.e., the number of arguments, including argv[0]).

CS33 Intro to Computer Systems XIX–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)

 printf("%d\n", rand());
 return 0;

}

CS33 Intro to Computer Systems XIX–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

}

CS33 Intro to Computer Systems XIX–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};

 execv("./random", argv);
 printf("random done\n");

}
The printf statement will be
executed

a) always
b) only if execv fails
c) only if execv succeeds

Note that argv[0] is the name by which the program is invoked. argv[1] is the
first “real” argument. In this program, argv[2] will contain the NULL pointer (0).
arrgc is two, indicating two arguments (argv[0] and argv[1]).

CS33 Intro to Computer Systems XIX–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());

 return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XIX–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
 char *argv = {"random", "12", (void *)0};

 execv("./random", argv);
}
/* what does the shell do here??? */

There’s a variant of waitpid, called wait, that waits for any child of the current
process to terminate.

CS33 Intro to Computer Systems XIX–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>

…
 pid_t pid;

 int status;
 …
 if ((pid = fork()) == 0) {

 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 }
 waitpid(pid, &status, 0);

The exit code is used to indicate problems that might have occurred while
running a program. The convention is that an exit code of 0 means success;
other values indicate some sort of error. Note that if the main function returns,
it returns to code that calls exit; thus, returning from main is equivalent to
calling exit. The argument passed to exit in this case is the value returned by
main.

CS33 Intro to Computer Systems XIX–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid_t pid;
 int status;
 if ((pid = fork()) == 0) {
 if (do_work() == 1)
 exit(0); /* success! */
 else
 exit(1); /* failure … */
 }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
 WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XIX–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};
 execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};

 execv("who", argv);

}

…

CS33 Intro to Computer Systems XIX–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

This information is from Wikipedia.

CS33 Intro to Computer Systems XIX–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

This information is also from Wikipedia.

CS Department computers run Debian Linux (and thus weren't affected by shellshock).

Our examples use bash syntax.

CS33 Intro to Computer Systems XIX–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XIX–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

Most programs perform file I/O using library code layered on top of system calls. In this
section we discuss just the kernel aspects of file I/O, looking at the abstraction and the
high-level aspects of how this abstraction is implemented.

The Unix file abstraction is very simple: files are simply arrays of bytes. Some systems
have special system calls to make a file larger. In Unix, you simply write where you’ve
never written before, and the file “magically” grows to the new size (within limits). The
names of files are equally straightforward — just the names labeling the path that leads
to the file within the directory tree. Finally, from the programmer’s point of view, all
operations on files appear to be synchronous — when an I/O system call returns, as far
as the process is concerned, the I/O has completed. (Things are different from the
kernel’s point of view.) Another important property of files is permanence: they continue
to exist until explicitly deleted.

Note that there are numerous issues in implementing the Unix file abstraction that we
do not cover in this course. In particular, we do not discuss what is done to lay out files
on disks (both rotating and solid-state) so as to take maximum advantage of their
architectures. Nor do we discuss the issues that arise in coping with failures and
crashes. What we concentrate on here are those aspects of the file abstraction that are
immediately relevant to application programs.

CS33 Intro to Computer Systems XIX–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

The notion that almost everything in Unix has a path name was a startlingly new
concept when Unix was first developed; one that has proved to be important. We discuss
this in more detail in the next lecture.

CS33 Intro to Computer Systems XIX–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

Given the name of a file, one uses open to get a file descriptor that will refer to that file
when performing operations on it. One calls close to tell the system one is no longer
using that file descriptor. The read and write system calls perform the indicated
operation on the file, using a buffer described by their second two arguments. By
default, read and write operations go through a file from beginning to end sequentially.
The lseek system call is used to specify where in a file the next read or write will take
place.

ssize_t (“signed size”) is a typedef for long and represents the number of bytes that were
transferred. It’s signed so as to allow -1 as a return value, which indicates an error. off_t
is also a typedef for long and represents an offset from some position in the file (the
starting position is given by the whence argument to lseek).

CS33 Intro to Computer Systems XIX–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)

• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

The file descriptors 0, 1, and 2 are set up before a process starts. File descriptor 0 refers
to input (the keyboard, by default). Descriptors 1 and 2 are for output: normal output
goes to file descriptor 1, error messages go to file descriptor 2. By default, this output
goes to the current window.

We’ll soon see a way to print more informative error messages than the one given here.

CS33 Intro to Computer Systems XIX–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

C programs often do I/O via the standard I/O library (known as stdio), which provides
both buffering and formatting.

CS33 Intro to Computer Systems XIX–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

The streams stdin, stdout, and stderr are automatically set up to refer to data from/to
file descriptors 0, 1, and 2, respectively.

CS33 Intro to Computer Systems XIX–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h

FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

The stdout stream is buffered. This means that characters written to stdout are copied
into a buffer. Only when either a newline is output or the capacity of the buffer is
reached are the characters actually written to the display (via a call to write). The reason
for doing things this way is to reduce the number of (relatively expensive) calls to write.

CS33 Intro to Computer Systems XIX–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

The stderr stream is not buffered. Thus characters output to it are immediately written
to the display.

CS33 Intro to Computer Systems XIX–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

Given the name of a file, one uses open to get a file descriptor that will refer to that file
when performing operations on it. One calls close to tell the system one is no longer
using that file descriptor. The read and write system calls perform the indicated
operation on the file, using a buffer described by their second two arguments. By
default, read and write operations go through a file from beginning to end sequentially.
The lseek system call is used to specify where in a file the next read or write will take
place.

ssize_t (“signed size”) is a typedef for long and represents the number of bytes that were
transferred. It’s signed so as to allow -1 as a return value, which indicates an error. off_t
is also a typedef for long and represents an offset from some position in the file (the
starting position is given by the whence argument to lseek).

CS33 Intro to Computer Systems XIX–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)

• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

The file descriptors 0, 1, and 2 are set up before a process starts. File descriptor 0 refers
to input (the keyboard, by default). Descriptors 1 and 2 are for output: normal output
goes to file descriptor 1, error messages go to file descriptor 2. By default, this output
goes to the current window.

We’ll soon see a way to print more informative error messages than the one given here.

CS33 Intro to Computer Systems XIX–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

C programs often do I/O via the standard I/O library (known as stdio), which provides
both buffering and formatting.

CS33 Intro to Computer Systems XIX–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

The streams stdin, stdout, and stderr are automatically set up to refer to data from/to
file descriptors 0, 1, and 2, respectively.

CS33 Intro to Computer Systems XIX–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h

FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

The stdout stream is buffered. This means that characters written to stdout are copied
into a buffer. Only when either a newline is output or the capacity of the buffer is
reached are the characters actually written to the display (via a call to write). The reason
for doing things this way is to reduce the number of (relatively expensive) calls to write.

CS33 Intro to Computer Systems XIX–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

The stderr stream is not buffered. Thus characters output to it are immediately written
to the display.

CS33 Intro to Computer Systems XIX–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

This is the code for the program echon, which we’ll be using as an example in the
upcoming slides.

The fgets function reads from the file stream given by its third argument and puts the
data read into the buffer pointed to by its first argument. It stops reading data
immediately after reading in a '\n' or after reading the number of bytes given as its
second argument, whichever comes first. Note that the '\n' is copied into the buffer.
(fgets is what programs should use rather than gets, as we saw when we discussed
buffer-overflow attacks.) The fputs function writes its first argument to the file stream
given by the second argument.

CS33 Intro to Computer Systems XIX–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Program
int main(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "Usage: echon reps\n");

 exit(1);

 }

 int reps = atoi(argv[1]);

 if (reps > 2) {

 fprintf(stderr, "reps too large, reduced to 2\n");
 reps = 2;

 }

 char buf[256];

 while (fgets(buf, 256, stdin) != NULL)

 for (int i=0; i<reps; i++)
 fputs(buf, stdout);

 return(0);

}

Our shell examples are all in bash. The slide shows how, via the shell, we can change
what stdout and stdin are. We'll soon see how we can do so for stderr.

CS33 Intro to Computer Systems XIX–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1
– stdout (fd 1) and stderr (fd 2) go to the display
– stdin (fd 0) comes from the keyboard

$ echon 1 > Output
– stdout goes to the file “Output” in the current

directory
– stderr goes to the display
– stdin comes from the keyboard

$ echon 1 < Input
– stdin comes from the file “Input” in the current

directory

Here we arrange so that file descriptor 1 (standard output) refers to /home/twd/Output. As we
discuss soon, if open succeeds, the file descriptor it assigns is the lowest-numbered one available.
Thus if file descriptors 0, 1, and 2 are unavailable (because they correspond to standard input,
standard output and standard error), then if file descriptor 1 is closed, it becomes the lowest-
numbered available file descriptor. Thus the call to open, if it succeeds, returns 1.

By setting the second argument of waitpid to 0, we're ignoring the exit status.

Note the use of perror. It's declared in stdio.h and is used for printing error messages after a
system call fails (returning -1). As we saw in the previous lecture, when a system call fails, in
addition to returning -1 it puts the failure code in the global variable errno. The function perror
uses the value in errno to index into an array of error messages and prints (to stderr) its argument
followed by the text of the error message.

Note that it's used only for system calls, such as open, close, read, write, fork, and execv. It doesn't
give correct results for functions that aren't system calls, such as printf. A function is a system call
if its description is in section 2 of the online unix manual. Thus, for system calls, typing, for
example, "man 2 open", results in a description of the open system call. Typing "man 2 printf"
results in an error message, since printf is not a system call, but a function supplied by the stdio
library.

In many cases typing "man <function_name>" (without specifying a section number) gives you the
correct man page for that function, but some function names are ambiguous. For example, printf
is both a shell command (which is documented in section 1 of the unix manual) and a function in
the stdio library (which is documented in section 3). To see the man page for the stdio-library
function printf, one should type "man 3 printf".

CS33 Intro to Computer Systems XIX–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Stdout in C
if ((pid = fork()) == 0) {

 /* set up file descriptor 1 in the child process */

 close(1);

 if (open("/home/twd/Output", O_WRONLY) == -1) {

 perror("/home/twd/Output");

 exit(1);

 }

 char *argv[] = {"echon", "2", NULL};
 execv("/home/twd/bin/echon", argv);

 exit(1);

}

/* parent continues here */

waitpid(pid, 0, 0); // wait for child to terminate

The file-descriptor table resides in the operating-system kernel; there’s one for each
process. Its entries are indexed by file descriptors; thus file descriptor 0 refers to the
first entry, file descriptor 1 refers to the second entry, etc. Each entry in the table refers
to a file context structure, as shown in the slide. This contains:

• a reference count, whose use we will see shortly

• an access mode, which specifies how the file was opened and thus how the process
may use the file (e.g., read-only or read-write)

• the file location, which is the byte offset into the file where the next operation will
take place

• the inode pointer, which is a data structure the OS provides for each file providing
detailed information about the file, including where it is on disk. It normally resides
on disk, but his brought into kernel memory when needed

CS33 Intro to Computer Systems XIX–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

ref
count

access
mode

file
location

inode
pointer

File context structure

The file-location field in the context structure indicates the offset into the file at which
the next read or write operation will take place. It’s normally set to 0 by OS when the file
is opened (one can also have it set to the offset of the end of the file by setting the
O_APPEND flag in open).

CS33 Intro to Computer Systems XIX–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 0 inode
pointer

File context structure

After reading or writing n bytes to a file, its file-location value is incremented by n. Thus,
by default, I/O to files is sequential.

CS33 Intro to Computer Systems XIX–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 4 inode
pointer

File context structure
write(5, "abc", 4);

One can set the file location by using the lseek system call. Setting it will affect where
the next read or write takes place. If the third argument is SEEK_SET, the offset given in
the second argument is treated as an offset from the beginning of the file. If it’s
SEEK_CUR, it’s treated as an offset from the current position in the file. If it’s
SEEK_END, it’s treated as an offset from the end of the file.

If one sets the offset to well beyond the end of the file and then writes to the file at that
position, leaving a “gap”, this gap, when read, is treated as if it contains zeroes.

CS33 Intro to Computer Systems XIX–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 12 inode
pointer

File context structure
lseek(5, 12,
 SEEK_SET);

One can depend on always getting the lowest available file descriptor.

CS33 Intro to Computer Systems XIX–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

• Whenever a process requests a new file
descriptor, the lowest-numbered file
descriptor not already associated with an
open file is selected; thus

 #include <fcntl.h>
 #include <unistd.h>

 close(0);
 fd = open("file", O_RDONLY);

– will always associate file with file descriptor 0
(assuming that open succeeds)

This redirects both standard output and standard error to be the file
/home/twd/Output.

CS33 Intro to Computer Systems XIX–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Output … Twice
if (fork() == 0) {

 /* set up file descriptors 1 and 2 in the child process */

 close(1);
 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {

 exit(1);

 }

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);

 }

 char *argv[] = {"echon", 2, NULL};

 execv("/home/twd/bin/echon", argv);

 exit(1);

}

/* parent continues here */

This is the syntax used in bash (which is how it was done on the Bourne shell). Other
shells have different syntaxes for this.

CS33 Intro to Computer Systems XIX–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1 >Output 2>Output
– both stdout and stderr go to Output file

After opening the Output file twice, the file-descriptor table appears as shown in the
slide.

CS33 Intro to Computer Systems XIX–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 0 inode
pointer

1 WRONLY 0 inode
pointer

There is a potential problem here. Since our file (/home/twd/Output) has been opened
once for each file descriptor, when a write (in this case of 100 bytes) is done through file
descriptor 1, the file location field in its context is incremented by 100, but not that in
the other context. Thus, a subsequent write via file descriptor 2 would overwrite what
was just written via file descriptor 1.

CS33 Intro to Computer Systems XIX–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 100 inode
pointer

1 WRONLY 0 inode
pointer

Note that the actual input consists of X followed by a newline character.

Recall that echon first writes "reps too large, reduced to 2" to file descriptor 2, then
writes "x\nx\n" to file descriptor 1,

CS33 Intro to Computer Systems XIX–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

• Suppose we run
$ echon 3 >Output 2>Output

• The input line is
X

• What is the final content of Output?

a) reps too large, reduced to 2\nX\nX\n
b) X\nX\nreps too large, reduced to 2\n

c) X\nX\n too large, reduced to 2\n

The dup system call returns a newly allocated file descriptor that refers to the same file
context structure as does the file descriptor of its argument.

CS33 Intro to Computer Systems XIX–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {

 /* set up file descriptors 1 and 2 in the child process */

 close(1);

 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {

 exit(1);

 }

 dup(1); /* set up file descriptor 2 as a duplicate of 1 */

 char *argv[] = {"echon", 2};

 execv("/home/twd/bin/echon", argv);

 exit(1);

}

/* parent continues here */

Here we have one file context structure shared by both file descriptors, so an update to
the file location field done via one file descriptor affects the other as well.

CS33 Intro to Computer Systems XIX–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

2 WRONLY 100 inode
pointer

CS33 Intro to Computer Systems XIX–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 3 >Output 2>&1
– stdout goes to Output file, stderr is the dup of fd 1

– with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n

Here we have a log into which important information should be appended by each of our
processes. To make sure that each write goes to the current end of the file, it’s desirable
that the “logfile” file descriptor in each process refer to the same shared file context
structure. As it turns out, this does indeed happen: after a fork, the file descriptors in
the child process refer to the same file context structures as they did in the parent.

CS33 Intro to Computer Systems XIX–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O_WRONLY);

if (fork() == 0) {

 /* child process computes something, then does: */

 write(logfile, LogEntry, strlen(LogEntry));

 …

 exit(0);

}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));

…

Note that after a fork, the reference counts in the file context structures are incremented
to account for the new references by the child process.

CS33 Intro to Computer Systems XIX–51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

logfile

Parent’s
address space

Kernel address space

2 WRONLY 0 inode
pointer

logfile

Child’s
address space

Unix guarantees that writes are atomic, which means they effectively happen
instantaneously. Thus, if two occur at about the same time, the effect is as if one
completes before the other starts.

CS33 Intro to Computer Systems XIX–52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
int main() {

 if (fork() == 0) {

 fprintf(stderr, "Child");

 exit(0);

 }

 fprintf(stderr, "Parent");

}

Suppose the program is run as:
$ prog >file 2>&1

What is the final content of file? (Assume writes are “atomic”.)
a) either “ChildParent” or “ParentChild”
b) either “Childt” or “Parent”
c) either “Child” or “Parent”

Here is a portion of a Unix directory tree. The ovals represent files, the rectangles
represent directories (which are really just special cases of files).

CS33 Intro to Computer Systems XIX–53 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directories

unix etc home pro dev

twdpasswd motd

unix ...

slide1 slide2

A simple implementation of a directory consists of an array of pairs of component name
and inode number, where the latter identifies the target file’s inode to the operating
system (an inode is data structure maintained by the operating system that represents a
file). Note that every directory contains two special entries, “.” and “..”. The former refers
to the directory itself, the latter to the directory’s parent (in the case of the slide, the
directory is the root directory and has no parent, thus its “..” entry is a special case that
refers to the directory itself).

While this implementation of a directory was used in early file systems for Unix, it
suffers from a number of practical problems (for example, it doesn’t scale well for large
directories). It provides a good model for the semantics of directory operations, but
directory implementations on modern systems are more complicated than this (and are
beyond the scope of this course).

CS33 Intro to Computer Systems XIX–54 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

unix 117
etc 4

home 18
pro 36
dev 93

directory entry

. 1
.. 1

Here are two directory entries referring to the same file. This is done, via the shell,
through the ln command which creates a (hard) link to its first argument, giving it the
name specified by its second argument.
The shell’s “ln” command is implemented using the link system call.

CS33 Intro to Computer Systems XIX–55 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Hard Links

unix etc home pro dev

twd

image motd
unix ...

slide1 slide2

$ ln /unix /etc/image

link system call

Here are the (abbreviated) contents of both the root (/) and /etc directories, showing
how /unix and /etc/image are the same file. Note that if the directory entry /unix is
deleted (via the shell’s “rm” command), the file (represented by inode 117) continues to
exist, since there is still a directory entry referring to it. However, if /etc/image is also
deleted, then the file has no more links and is removed. To implement this, the file’s
inode contains a link count, indicating the total number of directory entries that refer to
it. A file is actually deleted only when its inode’s link count reaches zero.

Note: suppose a file is open, i.e. is being used by some process, when its link count
becomes zero. Rather than delete the file while the process is using it, the file will
continue to exist until no process has it open. Thus the inode also contains a reference
count indicating how many times it is open: in particular, how many system file table
entries point to it. A file is deleted when and only when both the link count and this
reference count become zero.

The shell’s “rm” command is implemented using the unlink system call.

Note that /etc/.. refers to the root directory.

CS33 Intro to Computer Systems XIX–56 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

unix 117
etc 4

home 18
pro 36
dev 93

. 4
.. 1

image 117
motd 33

. 1
.. 1

Differing from a hard link, a symbolic link (often called soft link) is a special kind of file
containing the name of another file. When the kernel processes such a file, rather than
simply retrieving its contents, it makes use of the contents by replacing the portion of
the directory path that it has already followed with the contents of the soft-link file and
then following the resulting path. Thus referencing /home/twd/mylink results in the
same file as referencing /unix. Referencing /etc/twd/unix/slide1 results in the same
file as referencing /home/twd/unix/slide1.

The shell’s “ln” command with the “-s” flag is implemented using the symlink system
call.

CS33 Intro to Computer Systems XIX–57 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Symbolic Links

unix etc home pro dev

twd

image twd
unix ...

slide1 slide2

% ln –s /unix /home/twd/mylink

% ln –s /home/twd /etc/twd

symlink system call

mylink

/unix/home/twd

The working directory is maintained in the kernel for each process. Whenever a
process attempts to follow a path that doesn’t start with “/”, it starts at its working
directory (rather than at “/”).

CS33 Intro to Computer Systems XIX–58 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Working Directory

• Maintained in kernel for each process
– paths not starting from “/” start with the working

directory
– changed by use of the chdir system call

» cd shell command
– displayed (via shell) using “pwd”

» how is this done?

Here’s a partial list of the options available as the second argument to open. (Further
options are often available, but they depend on the version of Unix.) Note that the first
three options are mutually exclusive: one, and only one, must be supplied. We discuss
the third argument to open, mode, in the next few slides.

CS33 Intro to Computer Systems XIX–59 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

– options
» O_RDONLY open for reading only
» O_WRONLY open for writing only
» O_RDWR open for reading and writing
» O_APPEND set the file offset to end of file prior to each

 write
» O_CREAT if the file does not exist, then create it,

 setting its mode to mode adjusted by umask
» O_EXCL if O_EXCL and O_CREAT are set, then

 open fails if the file exists
» O_TRUNC delete any previous contents of the file

We'd like to write data to the end of a file. One approach, shown here, is to use the lseek
system call to set the file location in the file context structure to the end of the file. Once
this is done, then when we write to the file, we're writing to its end and thus are
appending data to the file.

However, this assumes that no other program is writing data to the end of the file at the
same time. If another program were doing this, then the file could grow between our
calls to lseek and write. If this happens, then the write would no longer be to the end of
the file but would overwrite the data written by the other program.

CS33 Intro to Computer Systems XIX–60 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O_WRONLY);
lseek(fd, 0, SEEK_END);

 // sets the file location to the end
write(fd, buffer, bsize);

 // does this always write to the
 // end of the file?

By using the O_APPEND option of open, we make certain that writes on this file
descriptor are always to the end of file. If another program is doing this at the same
time, the operating system makes certain that one doesn't start until after the other
ends.

CS33 Intro to Computer Systems XIX–61 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O_WRONLY | O_APPEND);
write(fd, buffer, bsize);

 // this is guaranteed to write to the
 // end of the file

The ">>" operator tells the shell to open file with the O_APPEND flag so that writes are
always to the end of the file.

CS33 Intro to Computer Systems XIX–62 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

Each file has associated with it a set of access permissions indicating, for each of three
classes of principals, what sorts of operations on the file are allowed. The three classes
are the owner of the file, known as user, the group owner of the file, known simply as
group, and everyone else, known as others. The operations are grouped into the classes
read, write, and execute, with their obvious meanings. The access permissions apply to
directories as well as to ordinary files, though the meaning of execute for directories is
not quite so obvious: one must have execute permission for a directory file in order to
follow a path through it.

The system, when checking permissions, first determines the smallest class of principals
the requester belongs to: user (smallest), group, or others (largest). It then, within the
chosen class, checks for appropriate permissions.

CS33 Intro to Computer Systems XIX–63 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

The ls –lR command lists the contents of the current directory, its subdirectories,
their subdirectories, etc. in long format (the l causes the latter, the R the former).
In the current directory are two subdirectories, A and B, with access permissions as
shown in the slide. Note that the permissions are given as a string of characters: the
first character indicates whether or not the file is a directory, the next three characters
are the permissions for the owner of the file, the next three are the permissions for the
members of the file’s group’s members, and the last three are the permissions for the
rest of the world.
Quiz: the users joe and angie are members of the adm group; leo is not.

• May leo list the contents of directory A?

• May leo read A/x?

• May angie list the contents of directory B?

• May angie modify B/y?

• May joe modify B/x?

• May joe read B/y?

CS33 Intro to Computer Systems XIX–64 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

The chmod system call (and the similar chmod shell command) is used to change the
permissions of a file. Note that the symbolic names for the permissions are rather
cumbersome; what is often done is to use their numerical equivalents instead. Thus the
combination of read/write/execute permission for the user (0700), read/execute
permission for the group (050), and execute-only permission for others (01) can be
specified simply as 0751.

CS33 Intro to Computer Systems XIX–65 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)

» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)

» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

The umask (often called the “creation mask”) allows programs to have wired into them a
standard set of maximum needed permissions as their file-creation modes. Users then
have, as part of their environment (via a per-process parameter that is inherited by child
processes from their parents), a limit on the permissions given to each of the classes of
security principals. This limit (the umask) looks like the 9-bit permissions vector
associated with each file, but each one-bit indicates that the corresponding permission
is not to be granted. Thus, if umask is set to 022, then, whenever a file is created,
regardless of the settings of the mode bits in the open or creat call, write permission for
group and others is not to be included with the file’s access permissions.

You can determine the current setting of umask by executing the umask shell command
without any arguments.

(Recall that numbers written with a leading 0 are in octal (base-8) notation.)

CS33 Intro to Computer Systems XIX–66 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode

– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits

– e.g., turn off all permissions for others, write
permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

Originally in Unix one created a file only by using the creat system call. A separate
O_CREAT flag was later given to open so that it, too, can be used to create files. The
creat system call fails if the file already exists. For open, what happens if the file already
exists depends upon the use of the flags O_EXCL and O_TRUNC. If O_EXCL is included
with the flags (e.g., open(“newfile”, O_CREAT|O_EXCL, 0777)), then, as with creat,
the call fails if the file exists. Otherwise, the call succeeds and the (existing) file is
opened. If O_TRUNC is included in the flags, then, if the file exists, its previous contents
are eliminated and the file (whose size is now zero) is opened.

When a file is created by either open or creat, the file’s initial access permissions are
the bitwise AND of the mode parameter and the complement of the process’s umask
(explained in the previous slide).

CS33 Intro to Computer Systems XIX–67 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file

– permissions = mode & ~umask

A file’s link count is the number of directory entries that refer to it. There’s a separate
reference count that’s the number of file context structures that refer to it (via the inode
pointer – see slide XVII-9). These counts are maintained in the file’s inode, which
contains all information used by the operating system to refer to the file (on disk).

CS33 Intro to Computer Systems XIX–68 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

Note that the shell’s rm command is implemented using unlink; it simply removes the
directory entry, reducing the file’s link count by 1.

CS33 Intro to Computer Systems XIX–69 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XIX–70 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XIX–71 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XIX–72 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

Note that when a process terminates, all its open files are automatically closed.

CS33 Intro to Computer Systems XIX–73 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3
int main() {

 int fd = open("file", O_RDWR|O_CREAT, 0666);

 unlink("file");

 PutStuffInFile(fd);

 GetStuffFromFile(fd);

 return 0;

}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) The file will be deleted when the program terminates
c) Because the file is used after the unlink call, it won’t be

deleted

