
CS33 Intro to Computer Systems XIX–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS (2)

CS33 Intro to Computer Systems XIX–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Recap: Creating Your Own Processes

#include <unistd.h>
int main() {
 pid_t pid;
 if ((pid = fork()) == 0) {
 /* new process starts

 running here */

 }
 /* old process continues

 here */

}

CS33 Intro to Computer Systems XIX–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

CS33 Intro to Computer Systems XIX–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XIX–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
 execv("prog",
 argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
 execv("prog", argv);
}

.

.

.

.

.

.

fork

execv

CS33 Intro to Computer Systems XIX–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
–we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
 execv("./MyProg", argv);
}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

CS33 Intro to Computer Systems XIX–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

CS33 Intro to Computer Systems XIX–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());
 return 0;
}

CS33 Intro to Computer Systems XIX–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

}

CS33 Intro to Computer Systems XIX–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 printf("random done\n");
}

The printf statement will be
executed

a) always
b) only if execv fails
c) only if execv succeeds

CS33 Intro to Computer Systems XIX–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());

 return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XIX–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
 char *argv = {"random", "12", (void *)0};
 execv("./random", argv);

}
/* what does the shell do here??? */

CS33 Intro to Computer Systems XIX–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>
…

 pid_t pid;
 int status;
 …
 if ((pid = fork()) == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 }

 waitpid(pid, &status, 0);

CS33 Intro to Computer Systems XIX–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid_t pid;
 int status;
 if ((pid = fork()) == 0) {
 if (do_work() == 1)
 exit(0); /* success! */
 else
 exit(1); /* failure … */
 }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
 WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XIX–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {
 char *argv[] = {"who", 0};
 execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {
 char *argv[] = {"who", 0};
 execv("who", argv);

}

…

CS33 Intro to Computer Systems XIX–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

CS33 Intro to Computer Systems XIX–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

CS33 Intro to Computer Systems XIX–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XIX–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

CS33 Intro to Computer Systems XIX–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

CS33 Intro to Computer Systems XIX–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

CS33 Intro to Computer Systems XIX–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

CS33 Intro to Computer Systems XIX–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

CS33 Intro to Computer Systems XIX–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

CS33 Intro to Computer Systems XIX–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0

printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

CS33 Intro to Computer Systems XIX–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

CS33 Intro to Computer Systems XIX–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

CS33 Intro to Computer Systems XIX–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

CS33 Intro to Computer Systems XIX–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

CS33 Intro to Computer Systems XIX–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

CS33 Intro to Computer Systems XIX–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0

printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

CS33 Intro to Computer Systems XIX–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

CS33 Intro to Computer Systems XIX–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

CS33 Intro to Computer Systems XIX–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Program
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: echon reps\n");

 exit(1);

 }

 int reps = atoi(argv[1]);
 if (reps > 2) {
 fprintf(stderr, "reps too large, reduced to 2\n");

 reps = 2;

 }
 char buf[256];
 while (fgets(buf, 256, stdin) != NULL)
 for (int i=0; i<reps; i++)
 fputs(buf, stdout);

 return(0);
}

CS33 Intro to Computer Systems XIX–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1
– stdout (fd 1) and stderr (fd 2) go to the display
– stdin (fd 0) comes from the keyboard

$ echon 1 > Output
– stdout goes to the file “Output” in the current

directory
– stderr goes to the display
– stdin comes from the keyboard

$ echon 1 < Input
– stdin comes from the file “Input” in the current

directory

CS33 Intro to Computer Systems XIX–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Stdout in C
if ((pid = fork()) == 0) {
 /* set up file descriptor 1 in the child process */

 close(1);

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 perror("/home/twd/Output");

 exit(1);

 }

 char *argv[] = {"echon", "2", NULL};
 execv("/home/twd/bin/echon", argv);

 exit(1);
}

/* parent continues here */

waitpid(pid, 0, 0); // wait for child to terminate

CS33 Intro to Computer Systems XIX–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

ref
count

access
mode

file
location

inode
pointer

File context structure

CS33 Intro to Computer Systems XIX–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 0 inode
pointer

File context structure

CS33 Intro to Computer Systems XIX–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 4 inode
pointer

File context structure
write(5, "abc", 4);

CS33 Intro to Computer Systems XIX–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 12 inode
pointer

File context structure
lseek(5, 12,
 SEEK_SET);

CS33 Intro to Computer Systems XIX–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

• Whenever a process requests a new file
descriptor, the lowest-numbered file
descriptor not already associated with an
open file is selected; thus

 #include <fcntl.h>
 #include <unistd.h>

 close(0);
 fd = open("file", O_RDONLY);

– will always associate file with file descriptor 0
(assuming that open succeeds)

CS33 Intro to Computer Systems XIX–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Output … Twice
if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */

 close(1);

 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);

 }

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);

 }
 char *argv[] = {"echon", 2, NULL};
 execv("/home/twd/bin/echon", argv);

 exit(1);

}

/* parent continues here */

CS33 Intro to Computer Systems XIX–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1 >Output 2>Output
– both stdout and stderr go to Output file

CS33 Intro to Computer Systems XIX–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 0 inode
pointer

1 WRONLY 0 inode
pointer

CS33 Intro to Computer Systems XIX–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 100 inode
pointer

1 WRONLY 0 inode
pointer

CS33 Intro to Computer Systems XIX–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

• Suppose we run
$ echon 3 >Output 2>Output

• The input line is
X

• What is the final content of Output?

a) reps too large, reduced to 2\nX\nX\n
b) X\nX\nreps too large, reduced to 2\n

c) X\nX\n too large, reduced to 2\n

CS33 Intro to Computer Systems XIX–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */

 close(1);

 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);

 }

 dup(1); /* set up file descriptor 2 as a duplicate of 1 */

 char *argv[] = {"echon", 2};
 execv("/home/twd/bin/echon", argv);
 exit(1);

}

/* parent continues here */

CS33 Intro to Computer Systems XIX–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

2 WRONLY 100 inode
pointer

CS33 Intro to Computer Systems XIX–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 3 >Output 2>&1
– stdout goes to Output file, stderr is the dup of fd 1

– with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n

CS33 Intro to Computer Systems XIX–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
 /* child process computes something, then does: */

 write(logfile, LogEntry, strlen(LogEntry));

 …

 exit(0);

}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));

…

CS33 Intro to Computer Systems XIX–51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

logfile

Parent’s
address space

Kernel address space

2 WRONLY 0 inode
pointer

logfile

Child’s
address space

CS33 Intro to Computer Systems XIX–52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
int main() {
 if (fork() == 0) {
 fprintf(stderr, "Child");

 exit(0);

 }

 fprintf(stderr, "Parent");

}

Suppose the program is run as:
$ prog >file 2>&1

What is the final content of file? (Assume writes are “atomic”.)
a) either “ChildParent” or “ParentChild”
b) either “Childt” or “Parent”
c) either “Child” or “Parent”

CS33 Intro to Computer Systems XIX–53 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directories

unix etc home pro dev

twdpasswd motd

unix ...

slide1 slide2

CS33 Intro to Computer Systems XIX–54 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

unix 117
etc 4

home 18
pro 36
dev 93

directory entry

. 1
.. 1

CS33 Intro to Computer Systems XIX–55 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Hard Links

unix etc home pro dev

twd

image motd
unix ...

slide1 slide2

$ ln /unix /etc/image

link system call

CS33 Intro to Computer Systems XIX–56 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

unix 117
etc 4

home 18
pro 36
dev 93

. 4
.. 1

image 117
motd 33

. 1
.. 1

CS33 Intro to Computer Systems XIX–57 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Symbolic Links

unix etc home pro dev

twd

image twd
unix ...

slide1 slide2

% ln –s /unix /home/twd/mylink

% ln –s /home/twd /etc/twd

symlink system call

mylink

/unix/home/twd

CS33 Intro to Computer Systems XIX–58 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Working Directory

• Maintained in kernel for each process
– paths not starting from “/” start with the working

directory
– changed by use of the chdir system call

» cd shell command
– displayed (via shell) using “pwd”

» how is this done?

CS33 Intro to Computer Systems XIX–59 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

– options
» O_RDONLY open for reading only
» O_WRONLY open for writing only
» O_RDWR open for reading and writing
» O_APPEND set the file offset to end of file prior to each

 write
» O_CREAT if the file does not exist, then create it,

 setting its mode to mode adjusted by umask
» O_EXCL if O_EXCL and O_CREAT are set, then

 open fails if the file exists
» O_TRUNC delete any previous contents of the file

CS33 Intro to Computer Systems XIX–60 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O_WRONLY);
lseek(fd, 0, SEEK_END);
 // sets the file location to the end

write(fd, buffer, bsize);
 // does this always write to the

 // end of the file?

CS33 Intro to Computer Systems XIX–61 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O_WRONLY | O_APPEND);
write(fd, buffer, bsize);
 // this is guaranteed to write to the

 // end of the file

CS33 Intro to Computer Systems XIX–62 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

CS33 Intro to Computer Systems XIX–63 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

CS33 Intro to Computer Systems XIX–64 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

CS33 Intro to Computer Systems XIX–65 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

CS33 Intro to Computer Systems XIX–66 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode

– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits

– e.g., turn off all permissions for others, write
permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XIX–67 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file

– permissions = mode & ~umask

CS33 Intro to Computer Systems XIX–68 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

CS33 Intro to Computer Systems XIX–69 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XIX–70 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

CS33 Intro to Computer Systems XIX–71 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

CS33 Intro to Computer Systems XIX–72 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

CS33 Intro to Computer Systems XIX–73 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");

 PutStuffInFile(fd);

 GetStuffFromFile(fd);

 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) The file will be deleted when the program terminates
c) Because the file is used after the unlink call, it won’t be

deleted

