CS 33

Files Part 3

CS33 Intro to Computer Systems XX-1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The File Abstraction

A file is a simple array of bytes

A file is made larger by writing beyond its
current end

Files are named by paths in a naming tree
System calls on files are synchronous
Files are permanent

CS33 Intro to Computer Systems XX-2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Naming

* (almost) everything has a path name
— files
— directories
— devices (known as special files)
» keyboards
» displays
» disks
» etc.

CS33 Intro to Computer Systems XX-3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

/O System Calls

* int file descriptor = open (pathname,
mode [, permissions])

e int close(file descriptor)

* ssize t count = read(file descriptor,
buffer address, buffer size)

* ssize t count = write(file descriptor,
buffer address, buffer size)

* off t position = lseek(file descriptor,
offset, whence)

CS33 Intro to Computer Systems XX—4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
char buf [BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read (0, buf, sizeof(buf))) > 0)

if (write(l, buf, n) != n) {
write (2, note, strlen (note));
exit (1) ;

}

return (0) ;

CS33 Intro to Computer Systems XX-5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting < printf > < scanf >

Buffering | | stdin | [stdout | [stderr |

Syscalls

CS33 Intro to Computer Systems XX-6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h
scanf ("%d", &in); // read via f£.d. 0

printf ("$d\n", in); // write via f.d. 1
fprintf (stderr, "there was an error\n");
// write via f.d. 2

CS33 Intro to Computer Systems XX-7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Buffered Output

printf ("xy") ;
printf ("zz");

printf ("y\n");

X|y|lz|z|y|\n buffer

Xyzzy
display

CS33 Intro to Computer Systems XX-8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Unbuffered Output

fprintf (stderr, "xy");
fprintf (stderr, "zz");

fprintf (stderr, "y\n");

Xyzzy
display

CS33 Intro to Computer Systems XX-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Program

int main(int argc, char *argv/[]) {
if (argc != 2) {
fprintf (stderr,
exit (1)

}

int reps = atoi(argvi[l]);

"Usage: echon reps\n");

if (reps > 2) {

fprintf (stderr, reduced to 2\n");

"reps too large,

reps = 2;

}
char buf[256];

while (fgets(buf, 256, stdin) != NULL)
for (int 1=0; i<reps; 1t++t)
fputs (buf, stdout);
return (0) ;
}
XX-10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS33 Intro to Computer Systems

From the Shell ...

S echon 1
— stdout (fd 1) and stderr (fd 2) go to the display
— stdin (fd 0) comes from the keyboard

S echon 1 > Output

— stdout goes to the file “Output” in the current
directory

— stderr goes to the display
— stdin comes from the keyboard
S echon 1 < Input

— stdin comes from the file “Input” in the current
directory

CS33 Intro to Computer Systems XX-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Stdout in C

if ((pid = fork()) == 0)

/* set up file descriptor 1 in the child process */

close (1) ;

if (open("/home/twd/Output", O WRONLY) == -1) ({
perror ("/home/twd/Output") ;
exit (1)

}

char *argv([] = {"echon", "2", NULL};

execv ("/home/twd/bin/echon", argv):;

exit (1) ;

/* parent continues here */

waitpid(pid, 0, 0); // wait for child to terminate

CS33 Intro to Computer Systems XX-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

File-descriptor

table

o

1

2

3

File)

descriptor . \ ref |access| file inode
count | mode (location| pointer
File context structure
User
address space o
Kernel address space
CS33 Intro to Computer Systems XX-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

File-descriptor

table
0
1
2
3
File
descriptor —)
User
address space o

Kernel address space

\ 1 |wronry| o inode

pointer

File context structure

CS33 Intro to Computer Systems

XX-14

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

File-descriptor

table
0
1
2
3
File)
descriptor inode
. 1 WRONLY 4 i
write(5, "abc", 4); pointer
File context structure
User
address space o
Kernel address space
CS33 Intro to Computer Systems XX-15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Location

File-descriptor

table
o
1
2
3
File)
descriptor inode
. 1 WRONLY| 12 it
Iseek(5, 12, pointer
SEEK_SET); File context structure
User
address space o
Kernel address space
CS33 Intro to Computer Systems XX-16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

 Whenever a process requests a new file
descriptor, the lowest-numbered file
descriptor not already associated with an
open file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close (0) ;
fd = open("file", O RDONLY) ;

— will always associate file with file descriptor 0
(assuming that open succeeds)

CS33 Intro to Computer Systems XX-17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirecting Output ... Twice

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child process */
close (1) ;
close (2) ;

if (open("/home/twd/Output", O WRONLY) == -1) ({
exit (1) ;

}

if (open("/home/twd/Output", O WRONLY) == -1) ({
exit (1) ;

}

char *argv([] = {"echon", 2, NULL};

execv ("/home/twd/bin/echon", argv);
exit (1) ;
}

/* parent continues here */

CS33 Intro to Computer Systems XX-18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

S echon 1 >Output 2>Output
— both stdout and stderr go to Output file

CS33 Intro to Computer Systems XX-19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor
table

inode
File descriptor 1 == I / 1 jwronyi 0 pointer

File descriptor 2 =T

inode
pointer

1 WRONLY 0

User
address space

Kernel address space

CS33 Intro to Computer Systems XX-20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File descriptor 1 ==

File descriptor 2 =T

User
address space

File-descriptor

table inod
1 |wrony| 100 |'MOY€
: | pointer
1 |wrony| ¢ |Inode
pointer

Kernel address space

CS33 Intro to Computer Systems

XX-21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

e Suppose we run
S echon 3 >Output 2>Output
 The input line is
X
 What is the final content of Output?

a) X\nX\nreps too large, reduced to 2\n
b) X\nX\n too large, reduced to 2\n
c) reps too large, reduced to 2\nX\nX\n

CS33 Intro to Computer Systems XX-22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child process */
close (1) ;
close (2) ;
if (open("/home/twd/Output", O WRONLY) == -1) ({
exit (1)
}
dup(l); /* set up file descriptor 2 as a duplicate of 1 */
char *argv[] = {"echon", 2};
execv ("/home/twd/bin/echon", argv):;
exit (1) ;
}

/* parent continues here */

CS33 Intro to Computer Systems XX-23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor
table

| /\ :
>b 2 |wronLY| 100 ln.ode
\; pointer

File descriptor 1 ==

File descriptor 2 =T

User
address space

Kernel address space

CS33 Intro to Computer Systems XX-24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

From the Shell ...

S echon 3 >Output 2>&1
— stdout goes to Output file, stderr is the dup of fd 1

— with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n

CS33 Intro to Computer Systems XX-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O WRONLY) ;
if (fork() == 0) {
/* child process computes something, then does: */

write (logfile, LogEntry, strlen (LogEntry));

exit (0) ;

/* parent process computes something, then does: */

write (logfile, LogEntry, strlen(LogEntry)):;

CS33 Intro to Computer Systems XX-26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

lodfile =T~ |
Parent’s \ inod
address space 2 WRONLY 0 poi(:l t:r
__¢/
logfile /
Child’s
address space

Kernel address space

CS33 Intro to Computer Systems XX-27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main () {

if (fork() == 0) {
fprintf (stderr, "Child");
ex1t (0);

}

fprintf (stderr, "Parent");

Suppose the program is run as:
S prog >file 2>&l1

What is the final content of file? (Assume writes are “atomic”.)
a) either “Childt” or “Parent”

b) either “Child” or “Parent”
c) either “ChildParent” or “ParentChild”

CS33 Intro to Computer Systems XX-28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directories

unix | etc lhome| pro | dev

passwd| motd twd

unix

\ 4

slide1|slide2

CS33 Intro to Computer Systems XX-29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

directory entry

1

1
unix 117

etc 4
home 18
pro 36
dev 93

CS33 Intro to Computer Systems XX-30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Hard Links

unix | etc lhome| pro | dev

twd
4 unix
image| motd
\ 4
slide1|slide2

$ 1In /unix /etc/image

1link system call

CS33 Intro to Computer Systems XX-31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Directory Representation

1
1
unix 117
etc 4
home 18
pro 36
dev 93
4
1
image 117
motd 33

CS33 Intro to Computer Systems

XX-32

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Symbolic Links

unix | etc lhome| pro | dev

o~

twd

T~

unix | ... mylink

image| twd

\ 4
@ slide1|slide2 @
$ 1In -s /unix /home/twd/mylink

% 1n -s /home/twd /etc/twd
symlink system call

CS33 Intro to Computer Systems XX-33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Working Directory

* Maintained in kernel for each process

— paths not starting from “/” start with the working
directory

— changed by use of the chdir system call
» cd shell command

— displayed (via shell) using “pwd”
» how is this done?

CS33 Intro to Computer Systems XX-34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int options [, mode t mode])

— options
» O_RDONLY
» O_WRONLY
» O_RDWR
» O_APPEND

» O_CREAT
» O_EXCL

» O_TRUNC

open for reading only
open for writing only
open for reading and writing

set the file offset to end of file prior to each
write

if the file does not exist, then create it,
setting its mode to mode adjusted by umask

if O_EXCL and O_CREAT are set, then
open fails if the file exists

delete any previous contents of the file

CS33 Intro to Computer Systems

XX=-35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O WRONLY) ;
lseek (fd, 0, SEEK END);

// sets the file location to the end
write (fd, buffer, bsize);

// does this always write to the

// end of the file?

CS33 Intro to Computer Systems XX-36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O WRONLY | O_APPEND);
write (fd, buffer, bsize);

// this i1s guaranteed to write to the
// end of the file

CS33 Intro to Computer Systems XX-37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

CS33 Intro to Computer Systems XX-38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Access Permissions

« Who’s allowed to do what?

— who

» user (owner)

» group

» others (rest of the world)
— what

» read

» Write
» execute

CS33 Intro to Computer Systems XX-39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permissions Example

S 1s -1R

total 2

drwxr-x--x 2 7joe

drwxr----- 2 joe
/A:

total 1
-rw-rw-rw—- 1 joe
./B:

total 2
-r--rw-rw- 1 joe
-rw----rw- 1 angie

adm
adm

adm

adm
adm

adm group:
joe, angie

1024 Dec 17 13:34
1024 Dec 17 13:34 B

>

593 Dec 17 13:34 x

446 Dec 17 13:34 x
446 Dec 17 13:45 y

CS33 Intro to Computer Systems

XX-40

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode t mode)

— sets the file permissions of the given file to those
specified in mode

— only the owner of a file and the superuser may change
its permissions

— nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S IWUSR (0200), S IXUSR (0100)
» S_IRGRP (040), S IWGRP (020), S IXGRP (010)
» S _IROTH (04), S _IWOTH (02), S IXOTH (01)

CS33 Intro to Computer Systems XX-41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permission Bits

* It’s worth your while to remember this!
— read: 4
— write: 2
— execute: 1
— read/write: 6
— read/write/execute: 7

— user:group:others
» 0751
* rwx for user, rx for group, x for others
» 0640
» rw for user, r for group, nothing for others

CS33 Intro to Computer Systems XX-42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Umask

« Standard programs create files with
“maximum needed permissions” as mode

— compilers: 0777
— editors: 0666

* Per-process parameter, umask, used to turn
off undesired permission bits

— e.g., turn off all permissions for others, write
permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750

» editors: permissions = 0666 & ~(027) = 0640

— set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XX-43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

You get the following message when you

attempt to execute ./program (a file that you
own):

bash: ./program: Permission denied
Your first response should be:

a) execute the shell command
chmod 0644 program

b) execute the shell command
chmod 0755 program

c) find the source code for program and
recompile it

d) make an Ed post

CS33 Intro to Computer Systems XX-44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a File

Use either open or creat
— open (const char *pathname, int flags, mode t mode)
» flags must include O_CREAT

— creat (const char *pathname, mode t mode)
» open is preferred

 The mode parameter helps specify the permissions of
the newly created file

— permissions = mode & ~umask

CS33 Intro to Computer Systems XX-45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

