
CS33 Intro to Computer Systems XXI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 4

CS33 Intro to Computer Systems XXI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

– options
» O_RDONLY open for reading only
» O_WRONLY open for writing only
» O_RDWR open for reading and writing
» O_APPEND set the file offset to end of file prior to each

 write
» O_CREAT if the file does not exist, then create it,

 setting its mode to mode adjusted by umask
» O_EXCL if O_EXCL and O_CREAT are set, then

 open fails if the file exists
» O_TRUNC delete any previous contents of the file

CS33 Intro to Computer Systems XXI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O_WRONLY);
lseek(fd, 0, SEEK_END);
 // sets the file location to the end
write(fd, buffer, bsize);
 // does this always write to the

 // end of the file?

CS33 Intro to Computer Systems XXI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O_WRONLY | O_APPEND);
write(fd, buffer, bsize);
 // this is guaranteed to write to the
 // end of the file

CS33 Intro to Computer Systems XXI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

CS33 Intro to Computer Systems XXI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

CS33 Intro to Computer Systems XXI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

CS33 Intro to Computer Systems XXI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

CS33 Intro to Computer Systems XXI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Permission Bits

• It’s worth your while to remember this!
– read: 4
– write: 2
– execute: 1
– read/write: 6
– read/write/execute: 7

– user:group:others
» 0751

• rwx for user, rx for group, x for others
» 0640

• rw for user, r for group, nothing for others

CS33 Intro to Computer Systems XXI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode
– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits
– e.g., turn off all permissions for others, write

permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XXI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

You get the following message when you
attempt to execute ./program (a file that you
own):
bash: ./program: Permission denied
You’re first response should be:
a) execute the shell command

chmod 0644 program

b) execute the shell command
chmod 0755 program

c) find the source code for program and
recompile it

d) make an Ed post

CS33 Intro to Computer Systems XXI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file
– permissions = mode & ~umask

CS33 Intro to Computer Systems XXI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

CS33 Intro to Computer Systems XXI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XXI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

CS33 Intro to Computer Systems XXI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

CS33 Intro to Computer Systems XXI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

CS33 Intro to Computer Systems XXI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");
 PutStuffInFile(fd);

 GetStuffFromFile(fd);

 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) The file will be deleted when the program terminates
b) This program is doomed to failure, since the file is

deleted before it’s used
c) Because the file is used after the unlink call, it won’t be

deleted

CS33 Intro to Computer Systems XXI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

CS33 Intro to Computer Systems XXI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

CS33 Intro to Computer Systems XXI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

CS33 Intro to Computer Systems XXI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

CS33 Intro to Computer Systems XXI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

CS33 Intro to Computer Systems XXI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
 close(fd[0]);
 close(1);
 dup(fd[1]); close(fd[1]);
 execl("/usr/bin/who", "who", 0); // who sends output to pipe
}
if (fork() == 0) {
 close(fd[1]);
 close(0);
 dup(fd[0]); close(fd[0]);
 execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe
}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

CS33 Intro to Computer Systems XXI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (strcmp(tokens[i], ">") == 0) {
 // handle output redirection

 } else if (strcmp(tokens[i], "<") == 0) {
 // handle input redirection

 } else if (strcmp(tokens[i], "&") == 0) {
 // handle "no wait” (done in shell 2)
 } ... else {
 // handle other cases

 }
 }

 if (fork() == 0) {
 // ...
 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XXI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XXI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ...

}

whoops!

(whoops!)

CS33 Intro to Computer Systems XXI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ... deal with &
 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ... also deal with & here!
}

CS33 Intro to Computer Systems XXI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...

if (fork() == 0) {
// ...

execv(...);

}
// ... deal with &

goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ... also deal with & here!

}

CS33 Intro to Computer Systems XXI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; D | B; D | C; D = (A | B | C); D

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XXI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

CS33 Intro to Computer Systems XXI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 1

CS33 Intro to Computer Systems XXI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Interlude Between Shells

• Shell 1
– it can run programs
– it can redirect I/O

• Signals
– a mechanism for coping with exceptions and

external events
– the mechanism needed for shell 2

• Shell 2
– it can control running programs

CS33 Intro to Computer Systems XXI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Whoops …

$ SometimesUsefulProgram xyz
Are you sure you want to proceed?
Are you really sure?
Reformatting of your disk will begin
in 3 seconds.
Everything you own will be deleted.
There's little you can do about it.
Too bad …

Y
Y

Oh dear…

CS33 Intro to Computer Systems XXI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Gentler Approach

• Signals
–get a process’s attention

» send it a signal
–process must either deal with it or be

terminated
» in some cases, the latter is the only option

CS33 Intro to Computer Systems XXI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stepping Back …

• What are we trying to do?
– interrupt the execution of a program

» cleanly terminate it
or

» cleanly change its course

– not for the faint of heart
» it’s difficult
» it gets complicated
» (not done in Windows)

CS33 Intro to Computer Systems XXI–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals

• Generated (by OS) in response to
– exceptions (e.g., arithmetic errors, addressing

problems)
» synchronous signals

– external events (e.g., timer expiration, certain
keystrokes, actions of other processes)
» asynchronous signals

• Effect on process:
– termination (possibly producing a core dump)
– invocation of a function that has been set up to be a

signal handler
– suspension of execution
– resumption of execution

CS33 Intro to Computer Systems XXI–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

CS33 Intro to Computer Systems XXI–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid

• Also
– kill shell command
– type ctrl-c

» sends signal 2 (SIGINT) to current process
– type ctrl-\

» sends signal 3 (SIGQUIT) to current process
– type ctrl-z

» sends signal 20 (SIGTSTP) to current process
– do something bad

» bad address, bad arithmetic, etc.

CS33 Intro to Computer Systems XXI–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,
 sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS33 Intro to Computer Systems XXI–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
–signal(SIGINT, SIG_IGN);

• SIG_DFL
–use the default handler

» usually terminates the process
–signal(SIGINT, SIG_DFL);

CS33 Intro to Computer Systems XXI–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

void sigloop() {
 while(1)
 ;
}

int main() {
 void handler(int);
 signal(SIGINT, handler);
 sigloop();
 return 1;
}
void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

CS33 Intro to Computer Systems XXI–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
 struct sigaction *old);
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

CS33 Intro to Computer Systems XXI–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

