
CS33 Intro to Computer Systems XXII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 2

CS33 Intro to Computer Systems XXII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

CS33 Intro to Computer Systems XXII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
 struct sigaction *old);
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

CS33 Intro to Computer Systems XXII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

CS33 Intro to Computer Systems XXII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

CS33 Intro to Computer Systems XXII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

CS33 Intro to Computer Systems XXII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

CS33 Intro to Computer Systems XXII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

CS33 Intro to Computer Systems XXII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

CS33 Intro to Computer Systems XXII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,
 sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?

– inconvenient …
• Signals are masked while being handled

– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);
 // also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

CS33 Intro to Computer Systems XXII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

CS33 Intro to Computer Systems XXII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

CS33 Intro to Computer Systems XXII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

CS33 Intro to Computer Systems XXII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Job Control
$ who

– foreground job
$ multiprocessProgram

– foreground job
^Z
stopped
$ bg
[1] multiprocessProgram &

– multiprocessProgram becomes background job 1
$ longRunningProgram &
[2]
$ fg %1
multiprocessProgram

– multiprocessProgram is now the foreground job
^C
$

CS33 Intro to Computer Systems XXII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Groups

• Set of processes sharing the
window/keyboard

– sometimes called a job
• Foreground process group/job

– currently associated with window/keyboard
– receives keyboard-generated signals

• Background process group/job
– not currently associated with window/keyboard
– doesn’t currently receive keyboard-generated

signals

CS33 Intro to Computer Systems XXII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Keyboard-Generated Signals

• You type ctrl-C
• How does the system know which

process(es) to send the signal to?

Window

pid 16
pgroup 16

pgroup 16

Shell

CS33 Intro to Computer Systems XXII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Foreground Job

Window Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^C

CS33 Intro to Computer Systems XXII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Background Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 164

pid 179

pid 196

pgroup 164

$ multiprocessProgram2 &
$ ^C

CS33 Intro to Computer Systems XXII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stopping a Foreground Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$

pgroup 17

CS33 Intro to Computer Systems XXII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Backgrounding a Stopped Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$
$
bg

CS33 Intro to Computer Systems XXII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

pgroup 16

Foregrounding a Job

Window Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$ bg
$ fg %2

CS33 Intro to Computer Systems XXII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

$ long_running_prog1 &
$ long_running_prog2
^Z
[2] stopped
$ Which process group receives the

SIGINT signal?
a) the one containing

long_running_prog1
b) the one containing

long_running_prog2
c) the one containing the shell

^C

CS33 Intro to Computer Systems XXII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Process Group

if (fork() == 0) {
 // child
 setpgid(0, 0);

 /* puts current process into a
 new process group whose ID is

 the process’s pid.
 Children of this process will be in
 this process's process group.

 */
 ...

 execv(...);
}
// parent

CS33 Intro to Computer Systems XXII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting the Foreground Process Group

tcsetpgrp(fd, pgid);
 // sets the process group of the
 // terminal (window) referenced by
 // file descriptor fd to be pgid

CS33 Intro to Computer Systems XXII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Background Input and Output

• Background process reads from keyboard
– the keyboard really should be reserved for

foreground process
– background process gets SIGTTIN

» suspends it by default

• Background process writes to display
– display also used by foreground process
– could be willing to share
– background process gets SIGTTOU

» suspends it (by default)
» but reasonable to ignore it

CS33 Intro to Computer Systems XXII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Kill: Details

• int kill(pid_t pid, int sig)
– if pid > 0, signal sig sent to process pid
– if pid == 0, signal sig sent to all processes in the

caller’s process group
– if pid == −1, signal sig sent to all processes in the

system for which sender has permission to do so
– if pid < −1, signal sig is sent to all processes in

process group −pid

CS33 Intro to Computer Systems XXII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Life Cycle

ActiveNon-
Existent Zombie

CS33 Intro to Computer Systems XXII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

• Shell must call waitpid on each child
– easy for a foreground child
– what about background?

pid_t waitpid(pid_t pid, int *status, int options);

– pid values:
< −1 any child process whose process group is |pid|
−1 any child process
0 any child process whose process group is that of caller
> 0 child process whose ID is equal to pid

− wait(&status) is equivalent to waitpid(-1, &status, 0)

CS33 Intro to Computer Systems XXII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

(continued)

pid_t waitpid(pid_t pid, int *status, int options);
– options are some combination of the following

» WNOHANG
• return immediately if no child has exited (returns 0)

» WUNTRACED
• also return if a child has been stopped (suspended)

» WCONTINUED
• also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

• Shell reports status only when it is about to
display its prompt

– thus sufficient to check on background jobs just
before displaying prompt

CS33 Intro to Computer Systems XXII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

waitpid status

• WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

• WEXITSTATUS(*status): argument to exit
• WIFSIGNALED(*status): 1 if the process was terminated

by a signal and 0 otherwise
• WTERMSIG(*status): the signal which terminated the

process if it terminated by a signal
• WIFSTOPPED(*status): 1 if the process was stopped by a

signal
• WSTOPSIG(*status): the signal which stopped the

process if it was stopped by a signal
• WIFCONTINUED(*status): 1 if the process was resumed

by SIGCONT and 0 otherwise

CS33 Intro to Computer Systems XXII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example (in Shell)
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0){
 // examine all children who’ve terminated or stopped

 if (WIFEXITED(wstatus)) {
 // terminated normally

 ...
 }

 if (WIFSIGNALED(wstatus)) {
 // terminated by a signal
 ...

 }
 if (WIFSTOPPED(wstatus)) {
 // stopped
 ...

 }
}

CS33 Intro to Computer Systems XXII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Relationships (2)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Relationships (3)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals, Fork, and Exec

// set up signal handlers ...
if (fork() == 0) {
 // what happens if child gets signal?
 ...
 signal(SIGINT, SIG_IGN);
 signal(SIGFPE, handler);
 signal(SIGQUIT, SIG_DFL);
 execv("new prog", argv, NULL);
 // what happens if SIGINT, SIGFPE,
 // or SIGQUIT occur?

}

CS33 Intro to Computer Systems XXII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

• What happens if a signal occurs while a
process is doing a system call?

– handler not invoked until just before system call
returns to user
» system call might terminate early because of signal

– system call completes
– signal handler is invoked
– user code resumed as if the system call has just

returned

CS33 Intro to Computer Systems XXII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

• Some system calls take a long time
– large I/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

– a long wait is required
» a read from the keyboard requires waiting for

someone to type something

• If signal arrives in the midst of lengthy
system call, handler invoked:

– after current piece is completed
– after cancelling wait

CS33 Intro to Computer Systems XXII–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

• What if a signal is handled before the
system call completes?
– invoke handler, then return from system

call prematurely
• if one or more pieces were completed,

return total number of bytes transferred
• otherwise return “interrupted” error

CS33 Intro to Computer Systems XXII–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Non-
Lengthy Case

while(read(fd, buffer, buf_size) == –1) {
 if (errno == EINTR) {
 /* interrupted system call — try again */
 continue;
 }
 /* the error is more serious */
 perror("big trouble");
 exit(1);
}

CS33 Intro to Computer Systems XXII–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

int ret;
char buf[1024*1024*1024];

fillbuf(buf);

ret = write(1, buf, 1024*1024*1024);

• The value of ret is:
a) any integer in the range [-1, 1024*1024*1024]
b) either -1 or 1024*1024*1024
c) either -1, 0, or 1024*1024*1024

CS33 Intro to Computer Systems XXII–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy
Case

char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1){
 long num_xfrd = write(fd,
 bptr, remaining);
 if (num_xfrd == –1) {
 if (errno == EINTR) {
 // interrupted early
 continue;

 }
 perror("big trouble");
 exit(1);
 }

if (num_xfrd < remaining) {
 /* interrupted after the
 first step */
 remaining -= num_xfrd;
 bptr += num_xfrd;
 continue;
 }
 // success!
 break;
}

CS33 Intro to Computer Systems XXII–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler(int);
signal(SIGINT, handler);

 ... /* long-running buggy code */

}

void handler(int sig) {
... /* clean up */
exit(1);

}

CS33 Intro to Computer Systems XXII–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation_state_t state;

main() {

 void handler(int);

 signal(SIGINT, handler);

 long_running_procedure();

}

long_running_procedure() {
 while (a_long_time) {
 update_state(&state);

 compute_more();
 }

}

void handler(int sig) {
 display(&state);
}

CS33 Intro to Computer Systems XXII–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() {
 void handler(int);

 signal(SIGINT, handler);

 ... /* complicated program */

 myputs("important message\n");

 ... /* more program */

}

void handler(int sig) {

 ... /* deal with signal */

 myputs("equally important "
 "message\n");
}

CS33 Intro to Computer Systems XXII–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf[BSIZE];
int pos;
void myputs(char *str) {
 int len = strlen(str);
 for (int i=0; i<len; i++, pos++) {
 buf[pos] = str[i];
 if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
 write(1, buf, pos+1);
 pos = -1;
 }
 }
}

CS33 Intro to Computer Systems XXII–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

• Which library functions are safe to use within
signal handlers?

– abort
– accept
– access
– aio_error
– aio_return
– aio_suspend
– alarm
– bind
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– connect
– creat
– dup

– dup2
– execle
– execve
– _exit
– fchmod
– fchown
– fcntl
– fdatasync
– fork
– fpathconf
– fstat
– fsync
– ftruncate
– getegid
– geteuid
– getgid
– getgroups
– getpeername
– getpgrp
– getpid

– getppid
– getsockname
– getsockopt
– getuid
– kill
– link
– listen
– lseek
– lstat
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe
– poll
– posix_trace_event
– pselect
– raise
– read

– readlink
– recv
– recvfrom
– recvmsg
– rename
– rmdir
– select
– sem_post
– send
– sendmsg
– sendto
– setgid
– setpgid
– setsid
– setsockopt
– setuid
– shutdown
– sigaction
– sigaddset
– sigdelset

– sigemptyset
– sigfillset
– sigismember
– signal
– sigpause
– sigpending
– sigprocmask
– sigqueue
– sigsuspend
– sleep
– sockatmark
– socket
– socketpair
– stat
– symlink
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr

– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp
– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

CS33 Intro to Computer Systems XXII–51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe

