CS 33

Signals Part 3

CS33 Intro to Computer Systems XXII-1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Life Cycle

Non-
Xisten

CS33 Intro to Computer Systems XXI11-2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

« Shell must call waitpid on each child
— easy for a foreground child
— what about background?

pid t waitpid(pid t pid, int *status, int options);

— pid values:
<=1 any child process whose process group is |pid|
-1 any child process
0 any child process whose process group is that of caller

>0 child process whose ID is equal to pid

— wait (&status) is equivalentto waitpid (-1, &status, 0)

CS33 Intro to Computer Systems XXI11-3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

(continued)

pid t waitpid(pid t pid, int *status, int options);
— options are some combination of the following
» WNOHANG
 return immediately if no child has exited (returns 0)
» WUNTRACED

« also return if a child has been stopped (suspended)
» WCONTINUED

« also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXI1ll-4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

« Shell reports status only when it is about to
display its prompt

— thus sufficient to check on background jobs just
before displaying prompt

CS33 Intro to Computer Systems XXII-5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

waitpid status

 WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

« WEXITSTATUS(*status): argument to exit

 WIFSIGNALED(*status): 1 if the process was terminated
by a signal and 0 otherwise

- WTERMSIG(*status): the signal which terminated the
process if it terminated by a signal

« WIFSTOPPED(*status): 1 if the process was stopped by a
signal

« WSTOPSIG(*status): the signal which stopped the
process if it was stopped by a signal

« WIFCONTINUED(*status): 1 if the process was resumed
by SIGCONT and 0 otherwise

CS33 Intro to Computer Systems XXI1I1-6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example (in Shell)

int wret, wstatus;
while ((wret = waitpid (-1, &wstatus, WNOHANG|WUNTRACED)) > 0) {
// examine all children who’ve terminated or stopped
if (WIFEXITED (wstatus)) {
// terminated normally

}
if (WIFSIGNALED (wstatus)) {

// terminated by a signal

}
if (WIFSTOPPED (wstatus)) {

// stopped

}

CS33 Intro to Computer Systems XXII-7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)
[Init]

[Login 1 [Login 2] Login 3]

| S
[cmﬁa][cmd][cde[cde

N

[Sub procJ [Sub procJ

CS33 Intro to Computer Systems XXI111-8 Copyright © 2024 Thomas W. Doeppner. All rights reserved

Process Relationships (2)

[Init]

N

[Sub procJ [Sub procJ

CS33 Intro to Computer Systems XXI111-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved

Process Relationships (3)

[Init]

[Sub procJ [Sub procJ

CS33 Intro to Computer Systems XXII-10 Copyright © 2024 Thomas W . Doeppner . Al rights reserved .

Signals, Fork, and Exec

// set up signal handlers
if (fork() == 0) {
// what happens if child gets signal?

signal (SIGINT, SIG IGN);

signal (SIGFPE, handler);

signal (SIGQUIT, SIG DFL);

execv ("new prog", argv, NULL);

// what happens if SIGINT, SIGFPE,
// or SIGQUIT occur?

}

CS33 Intro to Computer Systems XXH1-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

 What happens if a signhal occurs while a
process is doing a system call?

— handler not invoked until just before system call
returns to user

» system call might terminate early because of signal
— system call completes
— signal handler is invoked

— user code resumed as if the system call has just
returned

CS33 Intro to Computer Systems XXIl-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

 Some system calls take a long time

— large 1/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

— a long wait is required

» a read from the keyboard requires waiting for
someone to type something

« If signal arrives in the midst of lengthy
system call, handler invoked:
— after current piece is completed
— after cancelling wait

CS33 Intro to Computer Systems XXII-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

 What if a signal is handled before the
system call completes?

— invoke handler, then return from system
call prematurely

* if one or more pieces were completed,
return total number of bytes transferred

« otherwise return “interrupted” error

CS33 Intro to Computer Systems XXIlI-14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Summary: Signals Occurring
During System Calls

* Either
— wait for system call to finish, then invoke handler
or

— stop system call early, then invoke handler
» EINTR error if nothing had been done yet
» return partial results if it was underway

CS33 Intro to Computer Systems XXII-15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy

Case

char buf [BSIZE];
fillbuf (buf) ;

long remaining = BSIZE;
char *bptr = buf;
while (1) {

long num xfrd = write (£fd,
bptr, remaining) ;
(num xfr -1) |
if (errno EINTR) {
// interrupted early
continue;

}

perror ("big trouble");
exit (1) ;

if

if (num xfrd < remaining) {
/* interrupted after the
first step */

remaining —= num xfrd;
bptr += num xfrd;
continue;

}

// success!
break;

CS33 Intro to Computer Systems

XXIl-16

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler (int) ;
signal (SIGINT, handler);

/* long-running buggy code */

void handler (int sig) {
/* clean up */
exit (1) ;
}

CS33 Intro to Computer Systems XXII-17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation state t state; long running procedure() {
while (a long time) {

main() | update state (&state);
void handler (int) ; compute more();
}
signal (SIGINT, handler); }
long running procedure(); void handler (int sig) {
} display (&state) ;

CS33 Intro to Computer Systems XXI1I1-18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() | void handler (int sig) {
void handler (int) ;
/* deal with signal */
signal (SIGINT, handler);
myputs ("equally important "
/* complicated program */ "message\n") ;

myputs ("important message\n") ;

/* more program */

CS33 Intro to Computer Systems XX11-19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf [BSIZE];
int pos;

void myputs (char *str) {
int len = strlen(str);
for (int i1i=0; i<len; i++, pos++) {
buf [pos] = str[i];
if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
write (1, buf, pos+l);
pos = -1;

CS33 Intro to Computer Systems XXII-20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

 Which library functions are safe to use within

abort
accept
access
aio_error
aio_return
aio_suspend
alarm

bind
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
chdir
chmod
chown
clock gettime
close
connect
creat

dup

dup2
execle
execve
_exit
fchmod
fchown
fcntl
fdatasync
fork
fpathconf
fstat
fsync
ftruncate
getegid
geteuid
getgid
getgroups
getpeername
getpgrp
getpid

signal handlers?

sigemptyset
sigfillset
sigismember
signal
sigpause
sigpending
sigprocmask
sigqueue
sigsuspend
sleep
sockatmark
socket
socketpair
stat

symlink
sysconf
tcdrain
tcflow
tcflush
tcgetattr

tcgetpgrp
tcsendbreak
tcsetattr
tcsetpgrp
time
timer_getoverrun
timer_gettime
timer_settime
times

umask

uname

unlink

utime

wait

waitpid

write

CS33 Intro to Computer Systems

getppid — readlink
getsockname — recv
getsockopt — recvfrom
getuid — recvmsg
kill — rename
link — rmdir
listen — select
Iseek — sem_post
Istat - send
mkdir — sendmsg
mkfifo — sendto
open — setgid
pathconf — setpgid
pause — setsid
pipe — setsockopt
poll — setuid
posix_trace_event- shutdown
pselect — sigaction
raise — sigaddset
read — sigdelset
XXIi-21

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) no, it’s inherently not async-signal safe
b) yes, but it would be so complicated, it’s not done
Cc) Yyes, it can be easily made async-signal safe

CS33 Intro to Computer Systems XXIll-22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33

Memory Hierarchy I

CS33 Intro to Computer Systems XXII-23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Inside A Disk Drive?
Spindle

Platters

Electronics
(including a
processor

SCSI " and memory!)
connector

Image courtesy of Seagate Technology

CS33 Intro to Computer Systems XXIl1-24

Disk Architecture

// Sector

ﬁ\-& /’
\ S
\ Disk heads
(on top and bottom _
of each platter) Cylinder

CS33 Intro to Computer Systems XXII-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example Disk Drive

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes
Sectors/track 500-1000; 750 average
Tracks/surface 100,000

Storage capacity 307.2 billion bytes
Average seek time 4 milliseconds
One-track seek time .2 milliseconds
Maximum seek time 10 milliseconds

CS33 Intro to Computer Systems XXIlI-26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Disk Structure: Top View of Single Platter

/%g Surface organized into tracks
| \ \ \ i g ; ; | Tracks divided into sectors

CS33 Intro to Computer Systems XXII-27

Disk Access

AN
NES

Head in position above a track

CS33 Intro to Computer Systems XXI111-28

Disk Access

AN
NES

Rotation is counter-clockwise

CS33 Intro to Computer Systems XXI111-29

Disk Access — Read

G
NES

About to read blue sector

CS33 Intro to Computer Systems XXI11-30

Disk Access — Read

After BLUE
read

After reading blue sector

CS33 Intro to Computer Systems XXI11-31

Disk Access — Read

After BLUE
read

Red request scheduled next

CS33 Intro to Computer Systems XXI11-32

Disk Access — Seek

After BLUE Seek for RED
read

Seek to red’s track

CS33 Intro to Computer Systems XXI11-33

Disk Access — Rotational Latency

After BLUE Seek for RED Rotational latency
read

Wait for red sector to rotate around

CS33 Intro to Computer Systems XXI1l-34

Disk Access — Read

S
NEEOANE NE27

After BLUE Seek for RED Rotational latency After RED read
read

Complete read of red

CS33 Intro to Computer Systems XXII-35

Disk Access — Service Time
Components

After BLUE Seek for RED Rotational latency After RED read

refd
Data transfer Seek Rotational Data transfer

latency

CS33 Intro to Computer Systems XXI1II-36

Disk Access Time

Average time to access some target sector approximated by :
— Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)
— time to position heads over cylinder containing target sector
— typical Tavg seek is 3-9 ms
Rotational latency (Tavg rotation)
— time waiting for first bit of target sector to pass under r/w head
— typical rotation speed R =7200 RPM
— Tavg rotation = 1/2 x 1/R x 60 sec/1 min
Transfer time (Tavg transfer)
— time to read the bits in the target sector
— Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

CS33 Intro to Computer Systems XXII-37

Disk Access Time Example

* Given:
— rotational rate = 7,200 RPM
— average seek time =9 ms
— avg # sectors/track = 600

* Derived:
— Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec =4 ms
— Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms

— Taccess =9ms +4 ms + 0.014 ms

* Important points:
— access time dominated by seek time and rotational latency

— first bit in a sector is the most expensive, the rest are free

— SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
» disk is about 40,000 times slower than SRAM
» 2,500 times slower than DRAM

CS33 Intro to Computer Systems XXI111-38

/10 Bus

CPUchip

Register file

: ALU|
Systembus Memory bus

_ | 10 Main
Busintortace [,)] WO KTy Main

l ‘ | ‘ /O bus | ‘ Expansion slots for
other devices such

USB Graphics Disk as network adapters.
controller adapter controller
Mouse Keyboard Monitor Fbl
Disk
J

CS33 Intro to Computer Systems XXI11-39

Readlng a Disk Sector (1)

CPU chip

Reglster file

c;

-

ALU|

1r

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller

Main
memory

<

/O bus >

A% N
USB Graphics
controller adapter
Mouse Keyloard Monitor

Disk
controller

CS33 Intro to Computer Systems

XXI11-40

Reading a Disk Sector (2)

CPUchip -

| Reglster file Disk controller reads the sector and
i) performs a direct memory access
<: ALU| (DMA\) transfer into main memory

Bus interface

LRV

Main
memory

<

USB Graphics
controller adapter
Mouse Keyboard Monitor

Disk
CS33 Intro to Computer Systems XXI11-41 ‘\-/I

Readlng a Disk Sector (3)

CPU chip
| Reglster flle

1C

: ALU|

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a

special “interrupt” pin on the CPU)

Main
memory

<

1/O bus >

<

<

UsSB Graphics Disk
controller adapter controller
Mouse Keyboard Monitor [<":>]
| Disk |
CS33 Intro to Computer Systems XXI111-42

Solid-State Disks (SSDs)

I/0O bus

Requests to read and
:) write logical disk blocks
Solid State Disk (SSD)

Flash
translation layer

. Flash memory
Block O Block B-1

Page 0 | Page1 | --- | Page P-1[| ... Page O | Page1 | --- | Page P-1

Pages: 512KB to 4KB; blocks: 32 to 128 pages

Data read/written in units of pages

Page can be written only after its block has been erased
A block wears out after 100,000 repeated writes

CS33 Intro to Computer Systems XXI11-43

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Random read access 30 us Random write access 300 us

 Why are random writes so slow?
— erasing a block is slow (around 1 ms)

— modifying a page triggers a copy of all useful pages in the
block

» find a used block (new block) and erase it
» write the page into the new block
» copy other pages from old block to the new block

CS33 Intro to Computer Systems XXI1ll-44

SSD Tradeoffs vs Rotating Disks

 Advantages
— no moving parts -> faster, less power, more rugged

* Disadvantages

— have the potential to wear out

» mitigated by “wear-leveling logic” in flash translation
layer

» e.g. Intel X25 guarantees 1 petabyte (1015 bytes) of
random writes before they wear out

— in 2010, about 100 times more expensive per byte
— in 2017, about 6 times more expensive per byte
— in 2024, about 1+€ times more expensive per byte

« Applications
— smart phones, laptops, desktops

CS33 Intro to Computer Systems XXI11-45

Reading a File on a Rotating Disk

* Suppose the data of a file are stored on
consecutive disk sectors on one track

— this is the best possible scenario for reading data
quickly

» single seek required
» single rotational delay
» all sectors read in a single scan

CS33 Intro to Computer Systems XXIllI-46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

We have two files on the same (rotating) disk. The first
file’s data resides in consecutive sectors on one track,
the second in consecutive sectors on another track. It
takes a total of f seconds to read all of the first file
then all of the second file.

Now suppose the files are read concurrently, perhaps
a sector of the first, then a sector of the second, then
the first, then the second, etc. Compared to reading

them sequentially, this will take

a) less time
b) much more time

c) about the same amount of time
(within a factor of 2)

CS33 Intro to Computer Systems XXII-47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

We have two files on the same solid-state disk. Each

file’s data resides in consecutive blocks. It takes a
total of t seconds to read all of the first file then all of

the second file.

Now suppose the files are read concurrently, perhaps
a block of the first, then a block of the second, then

the first, then the second, etc. Compared to reading
them sequentially, this will take

a) less time
b) much more time

c) about the same amount of time
(within a factor of 2)

CS33 Intro to Computer Systems XXIl1-48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Hierarchies

« Some fundamental and enduring properties of
hardware and software:

— fast storage technologies cost more per byte, have
less capacity, and require more power (heat!)

— the gap between CPU and main memory speed is
widening

— well written programs tend to exhibit good locality

 These fundamental properties complement
each other beautifully

* They suggest an approach for organizing

memory and storage systems known as a
memory hierarchy

CS33 Intro to Computer Systems XXI111-49

An Example Memory Hierarchy

A
LO: . .
. CPU registers hold words retrieved
egisters from L1 cache
L1: L1 cache
Smaller (SRAM) L1 cache holds cache lines retrieved
’ from L2 cache
faster,
i L2:
cost'I;er L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
Larger,
| ; (DRAM) Main memory holds disk blocks
shower’ retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
= Remote secondary storage
. (distributed file systems, cloud storage)
A\

CS33 Intro to Computer Systems XXI111-50

Putting Things Into Perspective ...

* Reading from:

— ... the L1 cache is like grabbing a piece of paper
from your desk (3 seconds)

— ... the L2 cache is picking up a book from a nearby
shelf (14 seconds)

— ... main system memory (DRAM) is taking a 4-
minute walk down the hall to talk to a friend

— ... a hard drive is like leaving the building to roam
the earth for one year and three months

CS33 Intro to Computer Systems XXII-51 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Disks Are Still Important

Cheap
— cost/byte less than SSDs (but not by much)

(fairly) Reliable

— data written to a disk is likely to be there next year

Sometimes fast
— data in consecutive sectors on a track can be read
quickly
Sometimes slow

— data in randomly scattered sectors takes a long
time to read

CS33 Intro to Computer Systems XXIlI-52 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Abstraction to the Rescue

 Programs don’t deal with sectors, tracks, and
cylinders
* Programs deal with files
— maze.c rather than an ordered collection of sectors
— OS provides the implementation

CS33 Intro to Computer Systems XXII-53 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

« Speed

— use the hierarchy

» copy files into RAM, copy back when done
— optimize layout

» put sectors of a file in consecutive locations
— use parallelism

» spread file over multiple disks

» read multiple sectors at once

CS33 Intro to Computer Systems XXIlI-54 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

* Reliability
— computer crashes

» what you thought was safely written to the file never
made it to the disk — it’s still in RAM, which is lost

» worse yet, some parts made it back to disk, some
didn’t
* you don’t know which is which
» on-disk data structures might be totally trashed
— disk crashes
» you had backed it up ... yesterday
— you screw up

» you accidentally delete the entire directory
containing your shell 2 implementation

CS33 Intro to Computer Systems XXII-55 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

* Reliability solutions
— computer crashes
» transaction-oriented file systems
» on-disk data structures always in well defined states
— disk crashes
» files stored redundantly on multiple disks
— you screw up

» file system automatically keeps "snapshots” of
previous versions of files

CS33 Intro to Computer Systems XXIlI-56 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

