CS 33

Signals Part 3

Process Life Cycle

Reaping: Zombie Elimination

- Shell must call waitpid on each child
 - easy for a foreground child
 - what about background?

```
pid_t waitpid(pid_t pid, int *status, int options);
    - pid values:
```

- < -1 any child process whose process group is |pid|
- -1 any child process
- 0 any child process whose process group is that of caller
- > 0 child process whose ID is equal to pid
- wait (&status) is equivalent to waitpid (-1, &status, 0)

(continued)

```
pid_t waitpid(pid_t pid, int *status, int options);
```

- options are some combination of the following
 - » WNOHANG
 - return immediately if no child has exited (returns 0)
 - **» WUNTRACED**
 - also return if a child has been stopped (suspended)
 - **» WCONTINUED**
 - also return if a child has been continued (resumed)

When to Call waitpid

- Shell reports status only when it is about to display its prompt
 - thus sufficient to check on background jobs just before displaying prompt

waitpid status

- WIFEXITED(*status): 1 if the process terminated normally and 0 otherwise
- WEXITSTATUS(*status): argument to exit
- WIFSIGNALED(*status): 1 if the process was terminated by a signal and 0 otherwise
- WTERMSIG(*status): the signal which terminated the process if it terminated by a signal
- WIFSTOPPED(*status): 1 if the process was stopped by a signal
- WSTOPSIG(*status): the signal which stopped the process if it was stopped by a signal
- WIFCONTINUED(*status): 1 if the process was resumed by SIGCONT and 0 otherwise

Example (in Shell)

```
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0) {
  // examine all children who've terminated or stopped
  if (WIFEXITED(wstatus)) {
    // terminated normally
  if (WIFSIGNALED(wstatus)) {
    // terminated by a signal
  if (WIFSTOPPED(wstatus)) {
    // stopped
```

Process Relationships (1)

Process Relationships (2)

Process Relationships (3)

Signals, Fork, and Exec

```
// set up signal handlers ...
if (fork() == 0) {
   // what happens if child gets signal?
   signal (SIGINT, SIG IGN);
   signal(SIGFPE, handler);
   signal(SIGQUIT, SIG DFL);
   execv("new prog", argv, NULL);
   // what happens if SIGINT, SIGFPE,
   // or SIGQUIT occur?
```

Signals and System Calls

- What happens if a signal occurs while a process is doing a system call?
 - handler not invoked until just before system call returns to user
 - » system call might terminate early because of signal
 - system call completes
 - signal handler is invoked
 - user code resumed as if the system call has just returned

Signals and Lengthy System Calls

- Some system calls take a long time
 - large I/O transfer
 - » multi-gigabyte read or write request probably done as a sequence of smaller pieces
 - a long wait is required
 - » a read from the keyboard requires waiting for someone to type something
- If signal arrives in the midst of lengthy system call, handler invoked:
 - after current piece is completed
 - after cancelling wait

Interrupted System Calls

- What if a signal is handled before the system call completes?
 - invoke handler, then return from system call prematurely
 - if one or more pieces were completed, return total number of bytes transferred
 - otherwise return "interrupted" error

Summary: Signals Occurring During System Calls

- Either
 - wait for system call to finish, then invoke handler or
 - stop system call early, then invoke handler
 - » EINTR error if nothing had been done yet
 - » return partial results if it was underway

Interrupted System Calls: Lengthy Case

```
char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1) {
  long num xfrd = write(fd,
      bptr, remaining);
  if (num xfrd == -1) {
    if (errno == EINTR) {
      // interrupted early
     continue;
    perror("big trouble");
    exit(1);
```

```
if (num xfrd < remaining) {</pre>
   /* interrupted after the
      first step */
   remaining -= num xfrd;
  bptr += num xfrd;
  continue;
// success!
break;
```

Asynchronous Signals (1)

```
main() {
  void handler(int);
   signal(SIGINT, handler);
   ... /* long-running buggy code */
void handler(int sig) {
   ... /* clean up */
  exit(1);
```

Asynchronous Signals (2)

Asynchronous Signals (3)

Asynchronous Signals (4)

```
char buf[BSIZE];
int pos;
void myputs(char *str) {
  int len = strlen(str);
  for (int i=0; i<len; i++, pos++) {
    buf[pos] = str[i];
    if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
      write(1, buf, pos+1);
     pos = -1;
```

Async-Signal Safety

 Which library functions are safe to use within signal handlers?

_	abort	_	dup2	_	getppid	_	readlink	_	sigemptyset	_	tcgetpgrp
_	accept	_	execle	_	getsockname	_	recv	_	sigfillset	_	tcsendbreak
_	access	_	execve	_	getsockopt	_	recvfrom	-	sigismember	_	tcsetattr
_	aio_error	_	_exit	_	getuid	_	recvmsg	-	signal	_	tcsetpgrp
_	aio_return	_	fchmod	_	kill	_	rename	_	sigpause	_	time
_	aio_suspend	_	fchown	_	link	_	rmdir	_	sigpending	_	timer_getoverrun
_	alarm	_	fentl	_	listen	_	select	_	sigprocmask	_	timer_gettime
_	bind	_	fdatasync	_	lseek	_	sem_post	_	sigqueue	_	timer_settime
_	cfgetispeed	_	fork	_	lstat	_	send	_	sigsuspend	_	times
_	cfgetospeed	_	fpathconf	_	mkdir	_	sendmsg	_	sleep	_	umask
_	cfsetispeed	_	fstat	_	mkfifo	_	sendto	_	sockatmark	_	uname
_	cfsetospeed	_	fsync	_	open	_	setgid	_	socket	_	unlink
_	chdir	_	ftruncate	_	pathconf	_	setpgid	_	socketpair	_	utime
_	chmod	_	getegid	_	pause	_	setsid	_	stat	_	wait
_	chown	_	geteuid	_	pipe	_	setsockopt	_	symlink	_	waitpid
_	clock_gettime	_	getgid	_	poll	_	setuid	_	sysconf	_	write
_	close	_	getgroups	_	posix_trace_even	t–	shutdown	_	tcdrain		
_	connect	_	getpeername	_	pselect	_	sigaction	_	tcflow		
_	creat	_	getpgrp	_	raise	_	sigaddset	_	tcflush		
_	dup	_	getpid	_	read	_	sigdelset	_	tcgetattr		

Quiz 1

Printf is not listed as being async-signal safe. Can it be implemented so that it is?

- a) no, it's inherently not async-signal safe
- b) yes, but it would be so complicated, it's not done
- c) yes, it can be easily made async-signal safe

CS 33

Memory Hierarchy II

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

Disk Architecture

Example Disk Drive

Rotation speed	10,000 RPM
Number of surfaces	8
Sector size	512 bytes
Sectors/track	500-1000; 750 average
Tracks/surface	100,000
Storage capacity	307.2 billion bytes
Average seek time	4 milliseconds
One-track seek time	.2 milliseconds
Maximum seek time	10 milliseconds

Disk Structure: Top View of Single Platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

Disk Access – Read

About to read blue sector

Disk Access - Read

After reading blue sector

Disk Access - Read

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Disk Access - Read

Complete read of red

Disk Access – Service Time Components

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - time to position heads over cylinder containing target sector
 - typical Tavg seek is 3-9 ms
- Rotational latency (Tavg rotation)
 - time waiting for first bit of target sector to pass under r/w head
 - typical rotation speed R = 7200 RPM
 - Tavg rotation = $1/2 \times 1/R \times 60 \sec/1 \min$
- Transfer time (Tavg transfer)
 - time to read the bits in the target sector
 - Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

Disk Access Time Example

Given:

- rotational rate = 7,200 RPM
- average seek time = 9 ms
- avg # sectors/track = 600

Derived:

- Tavg rotation = $1/2 \times (60 \text{ secs}/7200 \text{ RPM}) \times 1000 \text{ ms/sec} = 4 \text{ ms}$
- Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
- Taccess = 9 ms + 4 ms + 0.014 ms

Important points:

- access time dominated by seek time and rotational latency
- first bit in a sector is the most expensive, the rest are free
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - » disk is about 40,000 times slower than SRAM
 - » 2,500 times slower than DRAM

I/O Bus

CPU chip

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid-State Disks (SSDs)

- Pages: 512KB to 4KB; blocks: 32 to 128 pages
- Data read/written in units of pages
- Page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes

SSD Performance Characteristics

Sequential read tput	250 MB/s	Sequential write tput	170 MB/s
Random read tput	140 MB/s	Random write tput	14 MB/s
Random read access	30 us	Random write access	300 us

- Why are random writes so slow?
 - erasing a block is slow (around 1 ms)
 - modifying a page triggers a copy of all useful pages in the block
 - » find a used block (new block) and erase it
 - » write the page into the new block
 - » copy other pages from old block to the new block

SSD Tradeoffs vs Rotating Disks

Advantages

no moving parts → faster, less power, more rugged

Disadvantages

- have the potential to wear out
 - » mitigated by "wear-leveling logic" in flash translation layer
 - » e.g. Intel X25 guarantees 1 petabyte (10¹⁵ bytes) of random writes before they wear out
- in 2010, about 100 times more expensive per byte
- in 2017, about 6 times more expensive per byte
- in 2024, about 1+ ϵ times more expensive per byte

Applications

smart phones, laptops, desktops

Reading a File on a Rotating Disk

- Suppose the data of a file are stored on consecutive disk sectors on one track
 - this is the best possible scenario for reading data quickly
 - » single seek required
 - » single rotational delay
 - » all sectors read in a single scan

Quiz 2

We have two files on the same (rotating) disk. The first file's data resides in consecutive sectors on one track, the second in consecutive sectors on another track. It takes a total of *t* seconds to read all of the first file then all of the second file.

Now suppose the files are read concurrently, perhaps a sector of the first, then a sector of the second, then the first, then the second, etc. Compared to reading them sequentially, this will take

- a) less time
- b) much more time
- c) about the same amount of time (within a factor of 2)

Quiz 3

We have two files on the same solid-state disk. Each file's data resides in consecutive blocks. It takes a total of *t* seconds to read all of the first file then all of the second file.

Now suppose the files are read concurrently, perhaps a block of the first, then a block of the second, then the first, then the second, etc. Compared to reading them sequentially, this will take

- a) less time
- b) much more time
- c) about the same amount of time (within a factor of 2)

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - fast storage technologies cost more per byte, have less capacity, and require more power (heat!)
 - the gap between CPU and main memory speed is widening
 - well written programs tend to exhibit good locality
- These fundamental properties complement each other beautifully
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy

Putting Things Into Perspective ...

Reading from:

- ... the L1 cache is like grabbing a piece of paper from your desk (3 seconds)
- ... the L2 cache is picking up a book from a nearby shelf (14 seconds)
- main system memory (DRAM) is taking a 4minute walk down the hall to talk to a friend
- a hard drive is like leaving the building to roam the earth for one year and three months

Disks Are Still Important

- Cheap
 - cost/byte less than SSDs (but not by much)
- (fairly) Reliable
 - data written to a disk is likely to be there next year
- Sometimes fast
 - data in consecutive sectors on a track can be read quickly
- Sometimes slow
 - data in randomly scattered sectors takes a long time to read

Abstraction to the Rescue

- Programs don't deal with sectors, tracks, and cylinders
- Programs deal with files
 - maze.c rather than an ordered collection of sectors
 - OS provides the implementation

Implementation Problems

- Speed
 - use the hierarchy
 - » copy files into RAM, copy back when done
 - optimize layout
 - » put sectors of a file in consecutive locations
 - use parallelism
 - » spread file over multiple disks
 - » read multiple sectors at once

Implementation Problems

Reliability

- computer crashes
 - » what you thought was safely written to the file never made it to the disk — it's still in RAM, which is lost
 - » worse yet, some parts made it back to disk, some didn't
 - you don't know which is which
 - on-disk data structures might be totally trashed
- disk crashes
 - » you had backed it up ... yesterday
- you screw up
 - » you accidentally delete the entire directory containing your shell 2 implementation

Implementation Problems

- Reliability solutions
 - computer crashes
 - » transaction-oriented file systems
 - » on-disk data structures always in well defined states
 - disk crashes
 - » files stored redundantly on multiple disks
 - you screw up
 - » file system automatically keeps "snapshots" of previous versions of files