
Most of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XXIV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Memory Hierarchy III

CS33 Intro to Computer Systems XXIV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reading a File on a Rotating Disk

• Suppose the data of a file are stored on
consecutive disk sectors on one track
– this is the best possible scenario for reading data

quickly
» single seek required
» single rotational delay
» all sectors read in a single scan

CS33 Intro to Computer Systems XXIV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

We have two files on the same (rotating) disk. The first
file’s data resides in consecutive sectors on one track,
the second in consecutive sectors on another track. It
takes a total of t seconds to read all of the first file
then all of the second file.
Now suppose the files are read concurrently, perhaps
a sector of the first, then a sector of the second, then
the first, then the second, etc. Compared to reading
them sequentially, this will take

a) less time
b) much more time
c) about the same amount of time

(within a factor of 2)

CS33 Intro to Computer Systems XXIV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

We have two files on the same solid-state disk. Each
file’s data resides in consecutive blocks. It takes a
total of t seconds to read all of the first file then all of
the second file.
Now suppose the files are read concurrently, perhaps
a block of the first, then a block of the second, then
the first, then the second, etc. Compared to reading
them sequentially, this will take

a) less time
b) much more time
c) about the same amount of time

(within a factor of 2)

Supplied by CMU.

CS33 Intro to Computer Systems XXIV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Hierarchies

• Some fundamental and enduring properties of
hardware and software:
– fast storage technologies cost more per byte, have

less capacity, and require more power (heat!)
– the gap between CPU and main memory speed is

widening
– well written programs tend to exhibit good locality

• These fundamental properties complement
each other beautifully

• They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy

Supplied by CMU.

CS33 Intro to Computer Systems XXIV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Example Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(distributed file systems, cloud storage)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

This analogy is from http://duartes.org/gustavo/blog/post/what-your-computer-does-
while-you-wait (definitely worth reading!).

CS33 Intro to Computer Systems XXIV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Putting Things Into Perspective ...

• Reading from:
– ... the L1 cache is like grabbing a piece of paper

from your desk (3 seconds)
– ... the L2 cache is picking up a book from a nearby

shelf (14 seconds)
– ... main system memory (DRAM) is taking a 4-

minute walk down the hall to talk to a friend
– ... a hard drive is like leaving the building to roam

the earth for one year and three months

CS33 Intro to Computer Systems XXIV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Disks Are Still Important

• Cheap
– cost/byte less than SSDs

• (fairly) Reliable
– data written to a disk is likely to be there next year

• Sometimes fast
– data in consecutive sectors on a track can be read

quickly
• Sometimes slow

– data in randomly scattered sectors takes a long
time to read

CS33 Intro to Computer Systems XXIV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Abstraction to the Rescue

• Programs donʼt deal with sectors, tracks, and
cylinders

• Programs deal with files
– maze.c rather than an ordered collection of sectors
– OS provides the implementation

CS33 Intro to Computer Systems XXIV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Speed
– use the hierarchy

» copy files into RAM, copy back when done
– optimize layout

» put sectors of a file in consecutive locations
– use parallelism

» spread file over multiple disks
» read multiple sectors at once

CS33 Intro to Computer Systems XXIV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability
– computer crashes

» what you thought was safely written to the file never
made it to the disk ⏤ it’s still in RAM, which is lost

» worse yet, some parts made it back to disk, some
didn’t
• you don’t know which is which
• on-disk data structures might be totally trashed

– disk crashes
» you had backed it up … yesterday

– you screw up
» you accidentally delete the entire directory

containing your shell 1 implementation

All of this is covered in CSCI 1670.

CS33 Intro to Computer Systems XXIV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability solutions
– computer crashes

» transaction-oriented file systems
» on-disk data structures always in well defined states

– disk crashes
» files stored redundantly on multiple disks

– you screw up
» file system automatically keeps "snapshots" of

previous versions of files

CS33 Intro to Computer Systems XXIV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linkers

CS33 Intro to Computer Systems XXIV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

gcc Steps

1) Compile
– to start here, supply .c file
– to stop here: gcc -S (produces .s file)
– if not stopping here, gcc compiles directly into a

.o file, bypassing the assembler

2) Assemble
– to start here, supply .s file
– to stop here: gcc -c (produces .o file)

3) Link
– to start here, supply .o file

The technology described here is current as of around 1990 and is known as static
linking. We discuss static linking first, then move on to dynamic linking (in a few
weeks), which is commonplace today.

CS33 Intro to Computer Systems XXIV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Linker

• An executable program is one that is ready to
be loaded into memory

• The linker (known as ld: /usr/bin/ld) creates
such executables from:
– object files produced by the compiler/assembler
– collections of object files (known as libraries or

archives)
– and more we’ll get to soon ...

CS33 Intro to Computer Systems XXIV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Linker’s Job

• Piece together components of program
– arrange within address space

» code (and read-only data) goes into text region
» initialized data goes into data region
» uninitialized data goes into bss region

• Modify address references, as necessary

The code is an implementation of the “sieve of Eratosthenes”, an early (~200 BCE)
algorithm for enumerating prime numbers. The idea is to iterate through the positive
integers. 2 is the first prime number. 3 is prime, since it’s not divisible by 2. 4 is not
prime, since it is divisible by 2. 5 is not prime, since it’s not divisible by any of the
primes discovered so far (5 is less than the largest’s square). This continues ad
infinitum.

The malloc function allocates storage within the dynamic region. We discuss it in detail
in an upcoming lecture.

CS33 Intro to Computer Systems XXIV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Program
int nprimes = 100;
int *prime, *prime2;

int main() {

 int i, j, current = 1;

 prime = (int *)malloc(nprimes*sizeof(*prime));

 prime2 = (int *)malloc(nprimes*sizeof(*prime2));

 prime[0] = 2; prime2[0] = 2*2;
 for (i=1; i<nprimes; i++) {

 NewCandidate:

 current += 2;

 for (j=0; prime2[j] <= current; j++) {

 if (current % prime[j] == 0)

 goto NewCandidate;
 }

 prime[i] = current; prime2[i] = current*current;

 }

 return 0;

}

data

bss

dynamic

text

What this program actually does isn't all that important for our discussion. However, it
prints out the vector of prime numbers in multiple columns.

CS33 Intro to Computer Systems XXIV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

... with Output
int nprimes = 100;
int *prime, *prime2;

int main() {

 ...

 printcol(5);

 return 0;

}

void printcol(int ncols) {

 int i, j;
 int nrows = (nprimes+ncols-1)/ncols;

 for (i = 0; i<nrows; i++) {

 for (j=0; (j<ncols) && (i+nrows*j < nvals); j++) {

 printf("%6d", prime[i + nrows*j]);

 }

 printf("\n");
 }

}

In the first two invocations of gcc, the “-c” flag tells it to compile the C code and produce
an object (“.o”) file, but not to go any further (and thus not to produce an executable
program). In the third invocation, gcc invokes the ld (linker) program to combine the two
object files into an executable program. As we discuss soon, it will also bring in code
(such as printf) from libraries.

CS33 Intro to Computer Systems XXIV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

... Compiled Separately

int nprimes = 100;
int *prime, *prime2;
int main() {
 ...
 printcol(5);
 return 0;
}

extern int nprimes;
int *prime;
void printcol(int ncols) {
 int i, j;
 int nrows = (nprimes+ncols-1)/ncols;
 for (i = 0; i<nrows; i++) {
 for (j=0; (j<ncols)
 && (i+nrows*j < nvals); j++) {
 printf("%6d", prime[i + nrows*j]);
 }
 printf("\n");
 }
}

primes.c

printcol.cgcc –c primes.c
gcc –c printcol.c
gcc –o primes primes.o printcol.o

should refer to same thing

ditto

BSS is a mnemonic from an ancient assembler (not as ancient as Eratosthenes) and
stands for “block started by symbol”, a rather meaningless phrase. The BSS section of
the address space is where all uninitialized global and static local variables are placed.
When the program starts up, this entire section is filled with zeroes.

CS33 Intro to Computer Systems XXIV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global Variables

• Initialized vs. uninitialized
– initialized allocated in data section
– uninitialized allocated in bss section

» implicitly initialized to zero

• File scope vs. program scope
– static global variables known only within file that

declares them
» two of same name in different files are different
» e.g., static int X;

– non-static global variables potentially shared
across all files
» two of same name in different files are same
» e.g., int X;

CS33 Intro to Computer Systems XXIV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope

static int X;
int Y;

void func1(...) {
 ...
}

file1.c

static int X;
int Y;

void func2(...) {
 ...
}

file2.c

different

same

Static local variables have the same scope as other local variables, but their
values are retained across calls to the procedures they are declared in. Like
global variables, uninitialized static local variables are stored in the BSS
section of the address space (and implicitly initialized to zero), initialized static
local variables are stored in the data section of the address space.

CS33 Intro to Computer Systems XXIV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static Local Variables

int *sub1() {

 int var = 1;

 …

 return &var;
 /* amazingly illegal */

}

int *sub2() {

 static int var = 1;

 …

 return &var;
 /* (amazingly) legal */

}

X goes in the data section and has an initial value of 1. If file2.c did not exist, then X
would go in the bss section and have an initial value of 0. Note that the textbook calls
tentative definitions “weak definitions” and complete definitions “strong definitions”.
This is non-standard terminology and conflicts with the standard use of the term “weak
definition,” which we discuss shortly.

CS33 Intro to Computer Systems XXIV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (1)

int X;

void func1(...) {
 ...
}

file1.c

int X=1;

void func2(...) {
 ...
}

file2.c

Where does X go?
What’s its initial value?

tentative definition (complete) definition

• tentative definitions overridden by compatible (complete) definitions
• if not overridden, then initial value is zero

In this case we have conflicting definitions of X — this will be flagged (by the ld program)
as an error.

CS33 Intro to Computer Systems XXIV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (2)

int X=2;

void func1(...) {
 ...
}

file1.c

int X=1;

void func2(...) {
 ...
}

file2.c

What happens here?

No; it is flagged as an error: only one file may supply an initial value.

CS33 Intro to Computer Systems XXIV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (3)

int X=1;

void func1(...) {
 ...
}

file1.c

int X=1;

void func2(...) {
 ...
}

file2.c

Is this ok?

The “extern” means that this file will be using X, but it depends on some other file to
provide a definition for it, either initialized of uninitialized. If no other file provides a
definition, then ld flags an error.

If the “extern” were not there, i.e., if X were declared simply as an “int” in file1.c, then it
wouldn’t matter if no other file provided a definition for X — X would be allocated in bss
with an implicit initial value of 0.

Note: this description of extern is how it is implemented by gcc. The official C99
standard doesn’t require this behavior, but merely permits it. It also permits “extern” to
be essentially superfluous: its presence may mean the same thing as its absence.

The C11 standard more-or-less agrees with the C99 standard. Moreover, it explicitly
allows a declaration of the form “extern int X=1;” (i.e., initialization), which is not allowed
by gcc.

For most practical purposes, whatever gcc says is the law ...

CS33 Intro to Computer Systems XXIV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (4)

extern int X;

void func1(...) {
 ...
}

file1.c

int X=1;

void func2(...) {
 ...
}

file2.c

What’s the purpose of “extern”?

This rather trivial program references memory via only rsp and rip (rbp is set from rsp).
Its code contains no explicit references to memory, i.e., it contains no explicit addresses.

CS33 Intro to Computer Systems XXIV–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Does Location Matter?

int main(int argc, char *[]) {

return(argc);
}

main:
 pushq %rbp ; push frame pointer
 movq %rsp, %rbp ; set frame pointer to point to new frame
 movl %edi, %eax ; put argc into return register (eax)
 movq %rbp, %rsp ; restore stack pointer
 popq %rbp ; pop stack into frame pointer
 ret ; return: pops end of stack into rip

We don’t need to look at the assembler code to see what’s different about this program:
the machine code produced for it can’t simply be copied to an arbitrary location in our
computer’s memory and executed. The location identified by the name aX should
contain the address of the location containing X. But since the address of X will not be
known until the program is copied into memory, neither the compiler nor the assembler
can initialize aX correctly. Similarly, the addresses of subr and printf are not known
until the program is copied into memory — again, neither the compiler nor the
assembler would know what addresses to use.

CS33 Intro to Computer Systems XXIV–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Location Matters …

int X=6;

int *aX = &X;

int main() {

void subr(int);
int y = *aX;
subr(y);

return(0);
}

void subr(int i) {
printf("i = %d\n", i);

}

CS33 Intro to Computer Systems XXIV–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Relocation
– modify internal references according to where

module is loaded in memory
– modules needing relocation are said to be
relocatable
» which means they require relocation

– the compiler/assembler provides instructions to the
linker on how to do this

Note that what we did, in order to obtain what’s in the next few slides, was:

gcc –S –O1 main.c subr.c
gcc –c main.s subr.s
gcc –o prog main.o subr.o

CS33 Intro to Computer Systems XXIV–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Revised Version of Our Program

extern int X;

int *aX = &X;
int Y = 1;

int main() {
void subr(int);
int y = *aX+Y;

subr(y);

return(0);
}

#include <stdio.h>

int X;

void subr(int XX) {

printf("XX = %d\n", XX);

printf("X = %d\n", X);

}

main.c

subr.c

gcc –o prog –O1 main.c subr.c

Note that a symbol’s value is the location of what it refers to. The compiler/assembler
knows what the values (i.e., locations) of aX and Y are relative to the beginning of this
module’s data section (next slide), but has no idea what subr’s value is. It is the linker’s
job to provide final values for these symbols, which will be the addresses of the
corresponding C constructs when the program is loaded into memory. The linker will
adjust these values to obtain the locations of what they refer to relative to the value of
register rip when the referencing instructions are executed.

One might ask why these locations are referred to using offsets from the instruction
pointer (also known as the program counter), rather than simply using their addresses.
The reason is to save space: the addresses would be 64 bits long, but the offsets are only
32 bits long.

The “.file” directive supplies information to be placed in the object file and the executable
of use to debuggers — it tells them what the source-code file is.
The “.globl” directive indicates that the symbol, defined here, will be used by other
modules, and thus should be made known to the linker.
The “.type” directive indicates how the symbol is used. Two possibilities are function and
object (meaning a data object).
The “ .size” directive indicates the size that should be associated with the given symbol.

The directives starting with “.cfi_” are there for the sake of the debugger. They generate
auxiliary information stored in the object file (but not executed) that describes the
relation between the stack pointer (%rsp) and the beginning of the stack frame. Thus

CS33 Intro to Computer Systems XXIV–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

main.s (1)
.file "main.c"

0: .text
0: .globl main
0: .type main, @function
0: main:
0: .LFB0:
0: .cfi_startproc
0: subq $8, %rsp
4: .cfi_def_cfa_offset 16
4: movq aX(%rip), %rax
11: movl (%rax), %edi
13: addl Y(%rip), %edi
19: call subr
24: movl $0, %eax
29: addq $8, %rsp
33: .cfi_def_cfa_offset 8
33: ret
34: .cfi_endproc
34:.LFE0:
34: .size main, .-main

must be replaced with aX’s
address, expressed as an offset
from the next instruction

must be replaced with Y’s
address, expressed as an offset
from the next instruction

must be replaced with subr’s
address, expressed as an offset
from the next instruction

they compensate for the lack of a standard frame-pointer register (%esp for IA32). In
particular, they emit data going into a table that is used by a debugger (such as gdb) to
determine, based on the value of the instruction pointer (%rip) and the stack pointer,
where the beginning of the current stack frame is.

The symbol X’s value is, at this point, unknown.

The “.data” directive indicates that what follows goes in the data section.

The “.long” directive indicates that storage should be allocated for a long word.

The “.quad” directive indicates that storage should be allocated for a quad word.

The “.align” directive indicates that the storage associated with the symbol should be
aligned, in the cases here, on 4-byte and 8-byte boundaries (i.e., the least-significant
two bits and three bits of their addresses should be zeroes).

The “.ident” directive indicates the software used to produce the file and its version.

The “.section” directive used here is supplied by gcc by default and indicates that the
program should have a non-executable stack (this is important for security purposes).

CS33 Intro to Computer Systems XXIV–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

main.s (2)

.globl Y
0: .data
0: .align 4
0: .type Y, @object
0: .size Y, 4
0: Y:
0: .long 1
4: .globl aX
8: .align 8
8: .type aX, @object
8: .size aX, 8
8: aX:
8: .quad X
8: .ident "GCC: (Debian 4.7.2-5) 4.7.2"
0: .section .note.GNU-stack,"",@progbits

must be replaced with
address of X

Y should be made
known to others

aX should be made
known to others

The “.section” directive here indicates that what follows should be placed in read-only
storage (and will be included in the text section). Furthermore, what follows are strings
with a one-byte-per-character encoding that require one-byte (i.e., unrestricted)
alignment. This information will ultimately be used by the linker to reduce storage by
identifying strings that are suffices of others.

CS33 Intro to Computer Systems XXIV–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (1)

.file "subr.c"
0: .section .rodata.str1.1,"aMS",@progbits,1
0: .LC0:
0: .string "XX = %d\n"
9: .LC1:
9: .string "X = %d\n"

Note that the compiler has generated movl instructions (copying 32 bits) for copying the
addresses of .LC0 and .LC1: it’s assuming that both addresses will fit in 32 bits (in other
words, that the text section of the program will be less than 232 bytes long — probably a
reasonable assumption.

CS33 Intro to Computer Systems XXIV–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (2)
0: .text
0: .globl subr
0: .type subr, @function
0: subr:
0: .LFB11:
0: .cfi_startproc
0: subq $8, %rsp
4: .cfi_def_cfa_offset 16
4: movl %edi, %esi
6: movl $.LC0, %edi
11: movl $0, %eax
16: call printf
21: movl X(%rip), %esi
27: movl $.LC1, %edi
32: movl $0, %eax
37: call printf
42: addq $8, %rsp
46: .cfi_def_cfa_offset 8
46: ret
47: .cfi_endproc
47:.LFE11:
47: .size subr, .-subr

must be replaced with
.LC0’s address

must be replaced with
.LC1’s address

must be replaced with printf’s
address, expressed as an offset
from the next instruction

subr should be made
known to others

The “.comm” directive indicates here that four bytes of four-byte aligned storage are
required for X in BSS. “comm” stands for “common”, which is what the Fortran language
uses to mean the same thing as BSS. Since Fortran predates pretty much everything
(except for Eratosthenes), its terminology wins (at least here).

CS33 Intro to Computer Systems XXIV–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (3)

0: .comm X,4,4
0: .ident "GCC: (Debian 4.7.2-5) 4.7.2"
0: .section .note.GNU-stack,"",@progbits

reserve 4 bytes of 4-byte aligned
storage for X

CS33 Intro to Computer Systems XXIV–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

int X;

int func(int arg) {

 static int Y;

 int Z;

 ...

}

Which of X, Y, Z, and arg
would the compiler know the
addresses of at compile
time?

a) none
b) just X and Y
c) just arg and Z
d) all

CS33 Intro to Computer Systems XXIV–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Storage Allocation

CS33 Intro to Computer Systems XXIV–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Queue

typedef struct list_element {

 int value;
 struct list_element *next;
} list_element_t;

list_element_t *head, *tail;

67

17

2

14

head

tail

Note that malloc allocates storage to hold a new instance of list_element_t.

CS33 Intro to Computer Systems XXIV–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enqueue
int enqueue(int value) {
 list_element_t *newle
 = (list_element_t *)malloc(sizeof(list_element_t));
 if (newle == 0)
 return 0; // can't do it: out of memory
 newle->value = value;
 newle->next = 0;
 if (head == 0) {
 // list was empty
 assert(tail == 0);
 head = newle;
 } else {
 tail->next = newle;
 }
 tail = newle;
 return 1;
}

The problem with this code, which removes the first item in the queue, is that the list
element being removed is lost – its storage is not returned to the pool of free memory.

CS33 Intro to Computer Systems XXIV–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dequeue
int dequeue(int *value) {
 list_element_t *first;
 if (head == 0) {
 // list is empty

 return 0;
 }
 *value = head->value;
 first = head;
 head = head->next;
 if (tail == first) {
 assert(head == 0);
 tail = 0;
 }
 return 1;
}

What’s wrong with
this code???

Answer: around 18 seconds on a SunLab machine.

CS33 Intro to Computer Systems XXIV–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Storage Leaks

int main() {

 while(1)

 if (malloc(sizeof(list_element_t)) == 0)

 break;
 return 1;

}

For how long will this program
run before terminating?

Here after removing the list element from the list, we return it to the pool of free memory
by calling free.

CS33 Intro to Computer Systems XXIV–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dequeue, Fixed
int dequeue(int *value) {
 list_element_t *first;
 if (head == 0) {
 // list is empty

 return 0;
 }
 *value = head->value;
 first = head;
 head = head->next;
 if (tail == first)
 assert(head == 0);
 tail = 0;
 }
 free(first);
 return 1;
}

CS33 Intro to Computer Systems XXIV–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4
int enqueue(int value) {
 list_element_t *newle
 = (list_element_t *)malloc(sizeof(list_element_t));
 if (newle == 0)
 return 0;
 newle->value = value;
 newle->next = 0;
 if (head == 0) {
 // list was empty
 assert(tail == 0);
 head = newle;
 } else {
 tail->next = newle;
 }
 tail = newle;
 free(newle); // saves us the bother of freeing it later
 return 1;
}

This version of enqueue makes
unnecessary the call to free in
dequeue.

a) It works well.
b) It fails occasionally.
c) It hardly ever works.
d) It never works.

When something is malloc'd, the system must keep track of its size. Thus, when it's
freed, the system will know how much storage is being freed.

CS33 Intro to Computer Systems XXIV–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

malloc and free

void *malloc(size_t size)
– allocate size bytes of storage and return a pointer

to it
– returns 0 (NULL) if the requested storage isn’t

available
void free(void *ptr)

– free the storage pointed to by ptr
– ptr must have previously been returned by malloc

(or other storage-allocation functions — calloc and
realloc)

CS33 Intro to Computer Systems XXIV–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

realloc

void *realloc(void *ptr, size_t size)
– change the size of the storage pointed to by ptr
– the contents, up to the minimum of the old size and

new size, will not be changed
– ptr must have been returned by a previous call to
malloc, realloc, or calloc

– it may be necessary to allocate a completely new
area and copy from the old to the new
» thus the return value may be different from ptr
» if copying is done the old area is freed

– returns 0 if the operation cannot be done

In this example, we’re to read a line of input, where a line is delineated by a newline
character. However, we have no upper bound on its length. So, we start by allocating
four bytes of storage for the line. If that’s not enough (the four bytes read in don’t end
with a ‘\n’), we then double our allocation and read in more up to the end of the new
allocation, if that’s not enough, we double the allocation again, and so forth. When we’re
finished, we reduce the allocation, giving back to the system that portion we didn’t need.

CS33 Intro to Computer Systems XXIV–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (1)
char *getinput() {

 int alloc_size = 4; // start small
 int read_size = 4; // max number of bytes to read
 int next_read = 0; // index in buf of next read

 int bytes_read; // number of bytes read
 char *buf = (char *)malloc(alloc_size);
 char *newbuf;

 if (buf == 0) {
 // no memory

 return 0;
 }

We assume that if read returns neither -1 nor 0, then either it has filled the buffer or
that the last character read in was '\n'.

CS33 Intro to Computer Systems XXIV–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (2)
while (1) {

 if ((bytes_read
 = read(0, buf+next_read, read_size)) == -1) {

 perror("getinput");

 return 0;
 }

 if (bytes_read == 0) {

 // eof

 break;
 }

 if ((buf+next_read)[bytes_read-1] == '\n') {
 // end of line

 break;
 }

If we get here, then it’s the case that the buffer wasn’t big enough. So, let’s try to get a
larger buffer. If we can’t get a larger buffer (e.g., the system is out of memory), we free up
everything and report failure (probably not a great way to handle this, but it’s convenient
for the slide).

CS33 Intro to Computer Systems XXIV–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (3)
next_read += read_size;

 read_size = alloc_size;

 alloc_size *= 2;

 newbuf = (char *)realloc(buf, alloc_size);

 if (newbuf == 0) {
 // realloc failed: not enough memory.

 // Free the storage allocated previously and report

 // failure.

 free(buf);

 return 0;

 }

 buf = newbuf;

 }

CS33 Intro to Computer Systems XXIV–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (4)
// reduce buffer size to the minimum necessary

 newbuf = (char *)realloc(buf,
 alloc_size - (read_size - bytes_read));

 if (newbuf == 0) {

 // couldn't allocate smaller buf

 return buf;
 }

 return newbuf;
}

