
CS33 Intro to Computer Systems XXIV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Memory Hierarchy III



CS33 Intro to Computer Systems XXIV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reading a File on a Rotating Disk

• Suppose the data of a file are stored on 
consecutive disk sectors on one track
– this is the best possible scenario for reading data 

quickly
» single seek required
» single rotational delay
» all sectors read in a single scan



CS33 Intro to Computer Systems XXIV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

We have two files on the same (rotating) disk. The first 
file’s data resides in consecutive sectors on one track, 
the second in consecutive sectors on another track. It 
takes a total of t seconds to read all of the first file 
then all of the second file.
Now suppose the files are read concurrently, perhaps 
a sector of the first, then a sector of the second, then 
the first, then the second, etc. Compared to reading 
them sequentially, this will take

a) less time
b) much more time
c) about the same amount of time

(within a factor of 2)



CS33 Intro to Computer Systems XXIV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

We have two files on the same solid-state disk. Each 
file’s data resides in consecutive blocks. It takes a 
total of t seconds to read all of the first file then all of 
the second file.
Now suppose the files are read concurrently, perhaps 
a block of the first, then a block of the second, then 
the first, then the second, etc. Compared to reading 
them sequentially, this will take

a) less time
b) much more time
c) about the same amount of time

(within a factor of 2)



CS33 Intro to Computer Systems XXIV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Hierarchies

• Some fundamental and enduring properties of 
hardware and software:
– fast storage technologies cost more per byte, have 

less capacity, and require more power (heat!)
– the gap between CPU and main memory speed is 

widening
– well written programs tend to exhibit good locality

• These fundamental properties complement 
each other beautifully

• They suggest an approach for organizing 
memory and storage systems known as a 
memory hierarchy



CS33 Intro to Computer Systems XXIV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Example Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(distributed file systems, cloud storage)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved 
from L2 cache

CPU registers hold words retrieved 
from L1 cache

L2 cache holds cache lines 
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte



CS33 Intro to Computer Systems XXIV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Putting Things Into Perspective ...

• Reading from:
– ... the L1 cache is like grabbing a piece of paper 

from your desk (3 seconds)
– ... the L2 cache is picking up a book from a nearby 

shelf (14 seconds)
– ... main system memory (DRAM) is taking a 4-

minute walk down the hall to talk to a friend
– ... a hard drive is like leaving the building to roam 

the earth for one year and three months



CS33 Intro to Computer Systems XXIV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Disks Are Still Important

• Cheap
– cost/byte less than SSDs

• (fairly) Reliable
– data written to a disk is likely to be there next year

• Sometimes fast
– data in consecutive sectors on a track can be read 

quickly
• Sometimes slow

– data in randomly scattered sectors takes a long 
time to read



CS33 Intro to Computer Systems XXIV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Abstraction to the Rescue

• Programs donʼt deal with sectors, tracks, and 
cylinders

• Programs deal with files
– maze.c rather than an ordered collection of sectors
– OS provides the implementation



CS33 Intro to Computer Systems XXIV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Speed
– use the hierarchy

» copy files into RAM, copy back when done
– optimize layout

» put sectors of a file in consecutive locations
– use parallelism

» spread file over multiple disks
» read multiple sectors at once



CS33 Intro to Computer Systems XXIV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability
– computer crashes

» what you thought was safely written to the file never 
made it to the disk ⏤ it’s still in RAM, which is lost

» worse yet, some parts made it back to disk, some 
didn’t
• you don’t know which is which
• on-disk data structures might be totally trashed

– disk crashes
» you had backed it up … yesterday

– you screw up
» you accidentally delete the entire directory 

containing your shell 1 implementation



CS33 Intro to Computer Systems XXIV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability solutions
– computer crashes

» transaction-oriented file systems
» on-disk data structures always in well defined states

– disk crashes
» files stored redundantly on multiple disks

– you screw up
» file system automatically keeps "snapshots" of 

previous versions of files



CS33 Intro to Computer Systems XXIV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linkers



CS33 Intro to Computer Systems XXIV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

gcc Steps

1) Compile
– to start here, supply .c file
– to stop here: gcc -S (produces .s file)
– if not stopping here, gcc compiles directly into a 

.o file, bypassing the assembler
2) Assemble

– to start here, supply .s file
– to stop here: gcc -c (produces .o file)

3) Link
– to start here, supply .o file



CS33 Intro to Computer Systems XXIV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Linker

• An executable program is one that is ready to 
be loaded into memory

• The linker (known as ld: /usr/bin/ld) creates 
such executables from:
– object files produced by the compiler/assembler
– collections of object files (known as libraries or 

archives)
– and more we’ll get to soon ...



CS33 Intro to Computer Systems XXIV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Linker’s Job

• Piece together components of program
– arrange within address space

» code (and read-only data) goes into text region
» initialized data goes into data region
» uninitialized data goes into bss region

• Modify address references, as necessary



CS33 Intro to Computer Systems XXIV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Program
int nprimes = 100;
int *prime, *prime2;
int main() {
   int i, j, current = 1;
   prime = (int *)malloc(nprimes*sizeof(*prime));
   prime2 = (int *)malloc(nprimes*sizeof(*prime2));
   prime[0] = 2; prime2[0] = 2*2;

   for (i=1; i<nprimes; i++) {
   NewCandidate:

      current += 2;

      for (j=0; prime2[j] <= current; j++) {
         if (current % prime[j] == 0)
            goto NewCandidate;
      }

      prime[i] = current; prime2[i] = current*current;
   }

   return 0;
}

data

bss

dynamic

text



CS33 Intro to Computer Systems XXIV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

... with Output
int nprimes = 100;
int *prime, *prime2;
int main() {
   ...
   printcol(5);

   return 0;
}

void printcol(int ncols) {
   int i, j;
   int nrows = (nprimes+ncols-1)/ncols;
   for (i = 0; i<nrows; i++) {
      for (j=0; (j<ncols) && (i+nrows*j < nvals); j++) {
         printf("%6d", prime[i + nrows*j]);
      }

      printf("\n");

   }

}



CS33 Intro to Computer Systems XXIV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

... Compiled Separately

int nprimes = 100;
int *prime, *prime2;
int main() {
   ...
   printcol(5);
   return 0;
}

extern int nprimes;
int *prime;
void printcol(int ncols) {
   int i, j;
   int nrows = (nprimes+ncols-1)/ncols;
   for (i = 0; i<nrows; i++) {
      for (j=0; (j<ncols)
           && (i+nrows*j < nvals); j++) {
         printf("%6d", prime[i + nrows*j]);
      }
      printf("\n");
   }
}

primes.c

printcol.cgcc –c primes.c
gcc –c printcol.c
gcc –o primes primes.o printcol.o

should refer to same thing

ditto



CS33 Intro to Computer Systems XXIV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global Variables

• Initialized vs. uninitialized
– initialized allocated in data section
– uninitialized allocated in bss section

» implicitly initialized to zero

• File scope vs. program scope
– static global variables known only within file that 

declares them
» two of same name in different files are different
» e.g., static int X;

– non-static global variables potentially shared 
across all files
» two of same name in different files are same
» e.g., int X;



CS33 Intro to Computer Systems XXIV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Scope

static int X;
int Y;

void func1( ...) {
   ...
}

file1.c

static int X;
int Y;

void func2( ...) {
   ...
}

file2.c

different

same



CS33 Intro to Computer Systems XXIV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static Local Variables

int *sub1() {
  int var = 1;
  …

  return &var;
  /* amazingly illegal */

}

int *sub2() {
  static int var = 1;
  …

  return &var;
  /* (amazingly) legal */

}



CS33 Intro to Computer Systems XXIV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (1)

int X;

void func1( ...) {
   ...
}

file1.c

int X=1;

void func2( ...) {
   ...
}

file2.c

Where does X go?
What’s its initial value?

tentative definition (complete) definition

• tentative definitions overridden by compatible (complete) definitions
• if not overridden, then initial value is zero



CS33 Intro to Computer Systems XXIV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (2)

int X=2;

void func1( ...) {
   ...
}

file1.c

int X=1;

void func2( ...) {
   ...
}

file2.c

What happens here?



CS33 Intro to Computer Systems XXIV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (3)

int X=1;

void func1( ...) {
   ...
}

file1.c

int X=1;

void func2( ...) {
   ...
}

file2.c

Is this ok?



CS33 Intro to Computer Systems XXIV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (4)

extern int X;

void func1( ...) {
   ...
}

file1.c

int X=1;

void func2( ...) {
   ...
}

file2.c

What’s the purpose of “extern”?



CS33 Intro to Computer Systems XXIV–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Does Location Matter?

int main(int argc, char *[]) {
return(argc);

}

main: 
  pushq %rbp ; push frame pointer
  movq %rsp, %rbp ; set frame pointer to point to new frame
  movl %edi, %eax ; put argc into return register (eax)
  movq %rbp, %rsp ; restore stack pointer
  popq %rbp ; pop stack into frame pointer
  ret  ; return: pops end of stack into rip



CS33 Intro to Computer Systems XXIV–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Location Matters …

int X=6;
int *aX = &X;

int main() {
void subr(int);
int y = *aX;
subr(y);

return(0);
}

void subr(int i) {
printf("i = %d\n", i);

}



CS33 Intro to Computer Systems XXIV–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Relocation
– modify internal references according to where 

module is loaded in memory
– modules needing relocation are said to be 
relocatable
» which means they require relocation

– the compiler/assembler provides instructions to the 
linker on how to do this



CS33 Intro to Computer Systems XXIV–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Revised Version of Our Program

extern int X;
int *aX = &X;
int Y = 1;

int main() {
void subr(int);
int y = *aX+Y;
subr(y);

return(0);
}

#include <stdio.h>
int X;
 

void subr(int XX) {
printf("XX = %d\n", XX);

printf("X = %d\n", X);
}

main.c

subr.c

gcc –o prog –O1 main.c subr.c



CS33 Intro to Computer Systems XXIV–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

main.s (1)
.file   "main.c"

0:         .text
0:         .globl  main
0:         .type   main, @function
0: main:
0: .LFB0:
0:         .cfi_startproc
0:         subq    $8, %rsp
4:         .cfi_def_cfa_offset 16
4:         movq    aX(%rip), %rax
11:        movl    (%rax), %edi
13:        addl    Y(%rip), %edi
19:        call    subr
24:        movl    $0, %eax
29:        addq    $8, %rsp
33:        .cfi_def_cfa_offset 8
33:        ret
34:        .cfi_endproc
34:.LFE0:
34:        .size   main, .-main

must be replaced with aX’s 
address, expressed as an offset 
from the next instruction

must be replaced with Y’s 
address, expressed as an offset 
from the next instruction

must be replaced with subr’s 
address, expressed as an offset 
from the next instruction



CS33 Intro to Computer Systems XXIV–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

main.s (2)

.globl  Y
0:         .data
0:         .align 4
0:         .type   Y, @object
0:         .size   Y, 4
0: Y:
0:         .long   1
4:         .globl  aX
8:         .align 8
8:         .type   aX, @object
8:         .size   aX, 8
8: aX:
8:         .quad   X
8:         .ident  "GCC: (Debian 4.7.2-5) 4.7.2"
0:         .section        .note.GNU-stack,"",@progbits

must be replaced with 
address of X

Y should be made 
known to others

aX should be made 
known to others



CS33 Intro to Computer Systems XXIV–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (1)

.file   "subr.c"
0:         .section        .rodata.str1.1,"aMS",@progbits,1
0: .LC0:
0:         .string "XX = %d\n"
9: .LC1:
9:         .string "X = %d\n"



CS33 Intro to Computer Systems XXIV–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (2)
0:         .text
0:         .globl  subr
0:         .type   subr, @function
0: subr:
0: .LFB11:
0:         .cfi_startproc
0:         subq    $8, %rsp
4:         .cfi_def_cfa_offset 16
4:         movl    %edi, %esi
6:         movl    $.LC0, %edi
11:        movl    $0, %eax
16:        call    printf
21:        movl    X(%rip), %esi
27:        movl    $.LC1, %edi
32:        movl    $0, %eax
37:        call    printf
42:        addq    $8, %rsp
46:        .cfi_def_cfa_offset 8
46:        ret
47:        .cfi_endproc
47:.LFE11:
47:        .size   subr, .-subr

must be replaced with 
.LC0’s address

must be replaced with 
.LC1’s address

must be replaced with printf’s 
address, expressed as an offset 
from the next instruction

subr should be made 
known to others



CS33 Intro to Computer Systems XXIV–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

subr.s (3)

0:         .comm X,4,4
0:         .ident "GCC: (Debian 4.7.2-5) 4.7.2"
0:         .section        .note.GNU-stack,"",@progbits

reserve 4 bytes of 4-byte aligned 
storage for X



CS33 Intro to Computer Systems XXIV–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

int X;
int func(int arg) {
  static int Y;
  int Z;

  ...

}

Which of X, Y, Z, and arg 
would the compiler know the 
addresses of at compile 
time?

a) none
b) just X and Y
c) just arg and Z
d) all



CS33 Intro to Computer Systems XXIV–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Storage Allocation



CS33 Intro to Computer Systems XXIV–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Queue

typedef struct list_element {
  int value;
  struct list_element *next;
} list_element_t;

list_element_t *head, *tail;

67

17

2

14

head

tail



CS33 Intro to Computer Systems XXIV–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Enqueue
int enqueue(int value) {
  list_element_t *newle
      = (list_element_t *)malloc(sizeof(list_element_t));
  if (newle == 0)
    return 0; // can't do it: out of memory
  newle->value = value;
  newle->next = 0;
  if (head == 0) {
    // list was empty
    assert(tail == 0);
    head = newle;
  } else {
    tail->next = newle;
  }
  tail = newle;
  return 1;
}



CS33 Intro to Computer Systems XXIV–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dequeue
int dequeue(int *value) {
  list_element_t *first;
  if (head == 0) {
    // list is empty
    return 0;
  }
  *value = head->value;
  first = head;
  head = head->next;
  if (tail == first) {
    assert(head == 0);
    tail = 0;
  }
  return 1;
}

What’s wrong with 
this code???



CS33 Intro to Computer Systems XXIV–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Storage Leaks

int main() {
  while(1)
    if (malloc(sizeof(list_element_t)) == 0)
      break;
  return 1;
}

For how long will this program 
run before terminating?



CS33 Intro to Computer Systems XXIV–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dequeue, Fixed
int dequeue(int *value) {
  list_element_t *first;
  if (head == 0) {
    // list is empty
    return 0;
  }
  *value = head->value;
  first = head;
  head = head->next;
  if (tail == first)
    assert(head == 0);
    tail = 0;
  }
  free(first);
  return 1;
}



CS33 Intro to Computer Systems XXIV–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4
int enqueue(int value) {
  list_element_t *newle
      = (list_element_t *)malloc(sizeof(list_element_t));
  if (newle == 0)
    return 0;
  newle->value = value;
  newle->next = 0;
  if (head == 0) {
    // list was empty
    assert(tail == 0);
    head = newle;
  } else {
    tail->next = newle;
  }
  tail = newle;
  free(newle); // saves us the bother of freeing it later
  return 1;
}

This version of enqueue makes 
unnecessary the call to free in 
dequeue.

a) It works well.
b) It fails occasionally.
c) It hardly ever works.
d) It never works.



CS33 Intro to Computer Systems XXIV–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

malloc and free

void *malloc(size_t size)
– allocate size bytes of storage and return a pointer 

to it
– returns 0 (NULL) if the requested storage isn’t 

available
void free(void *ptr)

– free the storage pointed to by ptr
– ptr must have previously been returned by malloc 

(or other storage-allocation functions — calloc and 
realloc)



CS33 Intro to Computer Systems XXIV–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

realloc

void *realloc(void *ptr, size_t size)
– change the size of the storage pointed to by ptr
– the contents, up to the minimum of the old size and 

new size, will not be changed
– ptr must have been returned by a previous call to 
malloc, realloc, or calloc

– it may be necessary to allocate a completely new 
area and copy from the old to the new
» thus the return value may be different from ptr
» if copying is done the old area is freed

– returns 0 if the operation cannot be done



CS33 Intro to Computer Systems XXIV–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (1)
char *getinput() {
  int alloc_size = 4;  // start small
  int read_size = 4;   // max number of bytes to read
  int next_read = 0;   // index in buf of next read
  int bytes_read;      // number of bytes read
  char *buf = (char *)malloc(alloc_size);
  char *newbuf;

  if (buf == 0) {
    // no memory

    return 0;
  }



CS33 Intro to Computer Systems XXIV–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (2)
while (1) {

    if ((bytes_read
          = read(0, buf+next_read, read_size)) == -1) {

      perror("getinput");
      return 0;
    }
    if (bytes_read == 0) {
      // eof

      break;
    }

    if ((buf+next_read)[bytes_read-1] == '\n') {
      // end of line

      break;
    }



CS33 Intro to Computer Systems XXIV–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (3)
next_read += read_size;

    read_size = alloc_size;
    alloc_size *= 2;

    newbuf = (char *)realloc(buf, alloc_size);
    if (newbuf == 0) {
      // realloc failed: not enough memory.
      // Free the storage allocated previously and report

      // failure.

      free(buf);
      return 0;
    }
    buf = newbuf;

  }



CS33 Intro to Computer Systems XXIV–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (4)
// reduce buffer size to the minimum necessary

  newbuf = (char *)realloc(buf,
      alloc_size - (read_size - bytes_read));

  if (newbuf == 0) {
    // couldn't allocate smaller buf

    return buf;
  }

  return newbuf;
}


