
CS33 Intro to Computer Systems XXVI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Storage Allocation

It's now time to design the data structures we need to represent our "heap" – the
dynamic memory region.

CS33 Intro to Computer Systems XXVI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Data Structure Requirements

• All blocks
– we need to know how big they are

» when free is called, it must be known how much to
free

» when looking at a free block in malloc, we need to
know its size

– we need to know which they are: free or allocated
» needed for coalescing

• Free blocks
– they need to be linked into the free list

One solution (which we use in the malloc assignment) is the boundary tags approach.
Here we have a fixed overhead for each block of memory (whether free or allocated) that
indicates its size and whether it's free. So that we can determine if adjacent blocks are
free (and what their sizes are), we put this information at each end of the block. The
non-overhead portion of the block (which is available to hold data) is called the payload.

One could set the size to be the size of the entire block, or the size of just the payload –
either way can be made to work. We find it more convenient for the size to be that of the
entire block. Thus the size of the payload is size minus the amount of memory required
to hold the boundary tags (in our implementation, each boundary tag (containing size
and the allocated-or-free bit) is a long; thus the total amount of memory used for the
boundary tags is 16 bytes).

CS33 Intro to Computer Systems XXVI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution: Boundary Tags

Payload

Size A/F

Size A/F

Splitting a block is straightforward. We take a block that was previously free and divide
it into two blocks – an allocated block that's big enough to hold the storage request, and
the remainder represented as a free block.

CS33 Intro to Computer Systems XXVI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Splitting a Block

Free Block

1040 0

1040 0

Free Block

992 0

48 1

992 0

48 1

Allocated Block

The global variable flist_first is a pointer to the first item in the free list (and is null if
the free list is empty).

CS33 Intro to Computer Systems XXVI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Representing the Free List

• We need a pointer to the first element
– flist_first

• We need to traverse the list from beginning to
end
– required by malloc

• We need to merge adjacent blocks
– this may require removing a block from the free list,

then reinserting it (as part of a coalesced block)
• Links may be put in the free blockʼs payload

area
– not needed for allocated blocks!

Here's our representation of a free block. Note that it has both a forward link (flink) and
a backwards link (blink) – thus the free list is doubly linked.

CS33 Intro to Computer Systems XXVI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Free Block Representation

Size 0

Size 0

flink
blink

The free list is a circular, doubly linked list.

CS33 Intro to Computer Systems XXVI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Free List

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

If the course had a final exam, this question would definitely be on it. Make sure you
understand the answer. It will come up again in the course (and count towards your
grade!).

CS33 Intro to Computer Systems XXVI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

Why is the free list doubly linked?

a) we donʼt really need it to be doubly linked
for malloc and free, but it may be
necessary for some future operations

b) so that, given a pointer to an arbitrary free
block, we can easily remove the block
from the list

c) to facilitate sorting the free list
d) so we can traverse it in both directions

CS33 Intro to Computer Systems XXVI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

Why is the free list circular?

a) so that we donʼt have to special-case the
the handling of the first and last list
elements

b) to facilitate implementing the next-fit
search strategy

c) both of the above
d) none of the above

CS33 Intro to Computer Systems XXVI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Heap ≠ Free List

• Heap
– collection of all memory usable as dynamic

storage: the dynamic portion of the address space
» both allocated and free

• Free list
– those blocks of the heap that are free

» linked together (circular, doubly)

• Both important, but different
• Confusion: what does next block mean?

– next adjacent block (next in heap)
– next free block (next in free list)

We now look at implementing the coalesce operation, given our data structures. Let's
assume that we're about to free the middle block, of size 40. To handle coalescing, we
need to know whether the previous block and the next block are free.

CS33 Intro to Computer Systems XXVI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing Revisited

68 ?

68 ?

40 1

40 1

96 ?

96 ?

• We are freeing a block
• is the previous block free?
• is the next block free?
• are both free?

Suppose the previous block is free, but the next block is allocated. Thus, the previous
block is in the free list. We'll assume it's not the first element of the free list, which is
pointed to by flist_first.

CS33 Intro to Computer Systems XXVI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

We first pull the previous block from the free list.

CS33 Intro to Computer Systems XXVI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

We the merge the newly freed block with the previous block.

CS33 Intro to Computer Systems XXVI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

108 0
flink
blink

108 0
96 1

96 1

Finally, we add the merged free block to the beginning of the free list.

This, of course, is not the only way to do this. We could simply leave the previous block
in the free list at its current position and increase its size so as to absorb the block
being freed. This perhaps could be more efficient than what's shown in the slide, but it
leads to some slight complications in the code. Feel free to do it either way in your own
code.

A potential advantage of implementing coalesce as done here is that it puts a potentially
larger block at the beginning of the free list, possibly improving the performance of first
fit.

CS33 Intro to Computer Systems XXVI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (4)

108 0
flink
blink

108 0
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

Here the previous block is allocated but the next block is free.

CS33 Intro to Computer Systems XXVI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (1)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We first pull the next block from the free list.

CS33 Intro to Computer Systems XXVI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (2)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We then merge the block we're freeing with the next block.

CS33 Intro to Computer Systems XXVI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (3)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

68 1

68 1
136 0

136 0

flink
blink

Finally, we insert the combined block into the beginning of the free list.

Again, there are other ways for doing this. In particular, one might simply replace the
next block with the combined block, putting it into the free list where the next block
was.

CS33 Intro to Computer Systems XXVI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (4)

68 1

68 1
136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

Finally, we have the case in which both the previous and the next blocks are free.

CS33 Intro to Computer Systems XXVI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We remove both the prev and next blocks from the free list.

CS33 Intro to Computer Systems XXVI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We merge the block we're freeing with the prev and next blocks.

CS33 Intro to Computer Systems XXVI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

204 0
flink
blink

204 0

Finally we insert the combined block into the beginning of the free list.

CS33 Intro to Computer Systems XXVI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (4)

204 0
flink
blink

204 0

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

What we might like to be able to do in C is expressed on the slide. Unfortunately, C does
not allow such variable-sized arrays. Another concern is the allocated flag, which we’d
like to be included in the size fields.

CS33 Intro to Computer Systems XXVI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

C vs. Storage Allocation

Size

Payload

1

Size 1

Size 0

Size 0

flink

blink

typedef struct block {
 long size;
 long payload[size/8 - 2];
 long end_size;
} block_t;

typedef struct free_block {
 long size;
 struct free_block *flink;
 struct free_block *blink;
 long filler[size/8 - 4];
 long end_size;
} free_block_t;

Putting a zero for the dimension of payload is a way of saying that we do not know a
priori how big payload will be, so we give it an (arbitrary) size of 0. Note that sizeof(size_t)
is 8 (i.e., size_t is a typedef for a long).

CS33 Intro to Computer Systems XXVI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Overcoming C

• Think objects
– a block is an object

» opaque to the outside world
– define accessor functions to get and set its

contents

typedef struct block {
 size_t size;
 size_t payload[0];
} block_t;

In this example we have an allocated block of 40 bytes. Its size and end size fields have
their low-order bits set to one to indicate that the block is allocated. (Since each element
of payload is 8 bytes long, the entire allocated block, including tags, is 40 bytes long.)

CS33 Intro to Computer Systems XXVI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Allocated Block

40+1size
payload[0]
payload[1]
payload[2]

40+1payload[3]

actual
payload

end size

For a free block, the size fields contain the exact size of the block: the allocated bits are
zeroes. The first two elements of payload are the flink and blink pointers, respectively.

CS33 Intro to Computer Systems XXVI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Free Block

40+0size
payload[0]
payload[1]
payload[2]

40+0payload[3]

flink

end size

blink

• In general, end size is at payload[size/8 – 2]

If we assume that the size of a block is always even (in practice it's probably a multiple
of 4 or 8), then we can assume the least significant bit is zero and use that bit position
to represent the allocated flag.

CS33 Intro to Computer Systems XXVI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Overloading Size
Size a

size_t block_allocated(block_t *b) {
 return b->size & 1;
}

size_t block_size(block_t *b) {
 return b->size & -2;
}

The block_end_tag function returns the address of a block's end tag, given the address
of the beginning of the block (where its front tag is).

CS33 Intro to Computer Systems XXVI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

End Size

size_t *block_end_tag(block_t *b) {
 return &b->payload[b->size/8 - 2];
}

Size a

payload[0]

payload[1]

…

payload[Size/8 - 3]

payload[Size/8 - 2] end size

Here we have functions for setting both tags of a block.

CS33 Intro to Computer Systems XXVI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Setting the Size

void block_set_size(block_t *b, size_t size) {
 assert(!(size & 7)); // multiple of 8
 size |= block_allocated(b); // preserve alloc bit
 b->size = size;
 *block_end_tag(b) = size;
}

void block_set_allocated(block_t *b, size_t a) {
 assert((a == 0) || (a == 1));
 if (a) {
 b->size |= 1;
 *block_end_tag(b) |= 1;
 } else {
 b->size &= -2;
 *block_end_tag(b) &= -2;
 }
}

We take advantage of the boundary-tags approach to determine if the previous block is
free.

CS33 Intro to Computer Systems XXVI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Is Previous Adjacent Block Free?

Size

Payload

a

Size a

Size ?

size_t block_prev_allocated(
 block_t *b) {
 return b->payload[-2] & 1;
}

Similarly, we can determine if the next block is free.

CS33 Intro to Computer Systems XXVI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Is Next Adjacent Block Free?

Size

Payload

a

Size a

Size ?

block_t *block_next(
 block_t *b) {
 return (block_t *)
 ((char *)b + block_size(b));
}

size_t block_next_allocated(
 block_t *b) {
 return block_allocated(
 block_next(b));
}

An important operation is to add a block to the beginning of the free list. We start with a
picture of the free list.

CS33 Intro to Computer Systems XXVI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (1)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

Here's what it looks like after we add the block.

CS33 Intro to Computer Systems XXVI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (2)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

Here are a few more simple functions we need to access and set fields of blocks.

CS33 Intro to Computer Systems XXVI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Accessing the Object
block_t *block_flink(block_t *b) {
 return (block_t *)b->payload[0];
}

void block_set_flink(block_t *b, block_t *next) {
 b->payload[0] = (size_t)next;
}

block_t *block_blink(block_t *b) {
 return (block_t *)b->payload[1];
}

void block_set_blink(block_t *b, block_t *next) {
 b->payload[1] = (size_t)next;
}

Using our functions, here's the code to insert a block at the beginning of the free list.

CS33 Intro to Computer Systems XXVI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Insertion Code
void insert_free_block(block_t *fb) {
 assert(!block_allocated(fb));
 if (flist_first != NULL) {
 block_t *last =
 block_blink(flist_first);
 block_set_flink(fb, flist_first);
 block_set_blink(fb, last);
 block_set_flink(last, fb);
 block_set_blink(flist_first, fb);
 } else {
 block_set_flink(fb, fb);
 block_set_blink(fb, fb);
 }
 flist_first = fb;
}

We've used a lot of functions without thinking about their effect on performance. While
we know that the overhead of a function call is not great, there is still some overhead
that might best be eliminated.

CS33 Intro to Computer Systems XXVI–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Performance

• Won’t all the calls to the accessor functions
slow things down a lot?
– yes — not just a lot, but tons

• Why not use macros (#define) instead?
– the textbook does this
– it makes the code impossible to debug

» gdb shows only the name of the macro, not its body

• What to do????

If we declare a function to be inline, the C compiler is instructed to replace calls to the
function with its actual code (unless –O0 is specified). Thus, inlined functions have no
function-call overhead (though they do increase the total size of our code, which does
come at some cost).

Note that inline functions are declared to be static. This makes it possible to have two .c
files that use an inline function, with one compiled with –O0 and the other perhaps with
–O1 – since the function is static, it can be different in the two source files.

CS33 Intro to Computer Systems XXVI–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Inline Functions

static inline size_t block_size(

 block_t *b) {
 return b->size & -2;

}

– when debugging (–O0), the code is implemented as
a normal function
» easy to debug with gdb

– when optimized (–O1, –O2), calls to the function are
replaced with the body of the function
» no function-call overhead

The slide shows our heap, with allocated blocks shown in green and free blocks in white.
At either end of each block are its tags.

An issue that comes up when implementing malloc/free is dealing with the first and last
blocks, whether they are allocated or free. What is the prev block relative to the first
block? What is the next block relative to the last block? Having to special-case the first
and last blocks can help make your code unnecessarily complicated. To avoid these
complications, we use prolog and epilog blocks. These are blocks of minimum size
(containing just two tags and no payload) that are marked allocated. They are on either
end of the list. Since they're marked allocated, when a check is made of the prev block
relative to the first real block, it will always appear to be allocated, and similarly with the
next block relative to the last real block.

Thus, the initial heap might consist of three blocks: the prolog, a block representing the
initial free space, and an epilog. Of course, when the heap is expanded by calling sbrk,
the epilog must be moved to the new end of the heap.

CS33 Intro to Computer Systems XXVI–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Prolog and Epilog

prev? next?

prolog epilog

CS33 Intro to Computer Systems XXVI–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Virtual Memory

The concept of the address space is fundamental in most of today’s operating systems.
Threads of control executing in different address spaces are protected from one another,
since none of them can reference the memory of any of the others. In most systems
(such as Unix), the operating system resides in address space that is shared with all
processes, but protection is employed so that user threads cannot access the operating
system. What is crucial in the implementation of the address-space concept is the
efficient management of the underlying primary and secondary storage.

CS33 Intro to Computer Systems XXVI–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The Address-Space Concept

• Protect processes from one another
• Protect the OS from user processes
• Provide efficient management of available

storage

Early approaches to managing the address space were concerned primarily with
protecting the operating system from the user. One technique was the hardware-
supported concept of the memory fence: an address was established below which no
user mode access was allowed. The operating system was placed below this point in
memory and was thus protected from the user.

CS33 Intro to Computer Systems XXVI–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Fence

User Area

OS

The memory-fence approach protected the operating system, but did not protect user
processes from one another. (This wasn’t an issue for many systems—there was only
one user process at a time.) Another technique, still employed in some of today’s
systems, is the use of base and bounds registers to restrict a process’s memory
references to a certain range. Each address generated by a user process was first
compared with the value in the bounds register to make certain that it did not reference
a location beyond the process’s range of memory, and then was modified by adding to it
the value in the base register, ensuring that it did not reference a location before the
process’s range of memory.
A further advantage of this technique was to ensure that a process would be loaded into
what appeared to be location 0 — thus no relocation was required at load time.

CS33 Intro to Computer Systems XXVI–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Base and Bounds Registers

Base register

Base register
B

ounds
B

ounds

Swapping is a technique, still in use today, in which the images of entire processes are
transferred back and forth between primary and secondary storage. An early use of it
was for (slow) time-sharing systems: when a user paused to think, his or her process
was swapped out and that of another user was swapped in. This allowed multiple users
to share a system that employed only the memory fence for protection.

Base and bounds registers made it feasible to have a number of processes in primary
memory at once. However, if one of these processes was inactive, swapping allowed the
system to swap this process out and swap another process in. Note that the use of the
base register is very important here: without base registers, after a process is swapped
out, it would have to be swapped into the same location in which it resided previously.

CS33 Intro to Computer Systems XXVI–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Swapping

User Area

OS

The concept of overlays is similar to the concept of swapping, except that it applies to
pieces of images rather than whole images and the user is in charge. Say we have 100
kilobytes of available memory and a 200-kilobyte program. Clearly, not all the program
can be in memory at once. The user might decide that one portion of the program should
always be resident, while other portions of the program need be resident only for brief
periods. The program might start with routines A and B loaded into memory. A calls B;
B returns. Now A wants to call C, so it first reads C into the memory previously occupied
by B (it overlays B), and then calls C. C might then want to call D and E, though there is
only room for one at a time. So, C first calls D, D returns, then C overlays D with E and
then calls E.

The advantage of this technique is that the programmer has complete control of the use
of memory and can make the necessary optimization decisions. The disadvantage is that
the programmer must make the necessary decisions to make full use of memory (the
operating system doesn’t help out). Few programmers can make such decisions wisely,
and fewer still want to try.

CS33 Intro to Computer Systems XXVI–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Overlays

Overlay

Resident

One way to look at virtual memory is as an automatic overlay technique: processes “see”
an address space that is larger than the amount of real memory available to them; the
operating system is responsible for the overlaying.

Put more abstractly (and accurately), virtual memory is the support of an address space
that is independent of the size of primary storage. Some sort of mapping technique must
be employed to map virtual addresses to primary and secondary stores. In the typical
scenario, the computer hardware maps some virtual addresses to primary storage. If a
reference is made to an unmapped address, then a fault occurs (a page fault) and the
operating system is called upon to deal with it. The operating system might then find the
desired virtual locations on secondary storage (such as a disk) and transfer them to
primary storage. Or the operating system might decide that the reference is illegal and
deliver a seg fault to the process.

As with base and bounds registers, the virtual memory concept allows us to handle
multiple processes simultaneously, with the processes protected from one another.

CS33 Intro to Computer Systems XXVI–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Virtual Memory
Process 1

Process 2

Process 3

Memory

Disk

Virtual memory (what the program sees) is divided into fixed-size pages (on the x86
these are usually 4 kilobytes in size). Real memory (DRAM) is also divided into fixed-size
pieces, called page frames (though they’re often referred to simply as pages). A memory
map, implemented in hardware and often called a page table, translates references to
virtual-memory pages into references to real-memory page frames. In general, virtual
memory is larger than real memory, thus not all pages can be mapped to page frames.
Those that are not are said to have invalid translations.

CS33 Intro to Computer Systems XXVI–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Maps
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

i
2
i
i
0
1
i
i
i
i
i
i
3
i
i
i

0
1
2
3

Disk

Virtual Memory

Real Memory

Memory Map
(page table)

pages

page
frames

A page table is an array of page table entries. Suppose we have, as is the usual case for
the x86, a 32-bit virtual address and a page size of 4096 bytes. The 32-bit address
might be split into two parts: a 20-bit page number and a 12-bit offset within the page.
When a thread generates an address, the hardware uses the page-number portion as an
index into the page-table array to select a page-table entry, as shown in the picture. If
the page is in primary storage (i.e. the translation is valid), then the validity bit in the
page-table entry is set, and the page-frame-number portion of the page-table entry is the
high-order bits of the location in primary memory where the page resides. (Primary
memory is thought of as being subdivided into pieces called page frames, each exactly
big enough to hold a page; the address of each of these page frames is at a “page
boundary,” so that its low-order bits are zeros.) The hardware then appends the offset
from the original virtual address to the page-frame number to form the final, real
address.

If the validity bit of the selected page-table entry is zero, then a page fault occurs and
the operating system takes over. Other bits in a typical page-table entry include a
reference bit, which is set by the hardware whenever the page is referenced, and a
modified bit, which is set whenever the page is modified. We will see how these bits are
used later in this lecture. The page-protection bits indicate who is allowed access to
the page and what sort of access is allowed. For example, the page can be restricted for
use only by the operating system, or a page containing executable code can be write-
protected, meaning that read accesses are allowed but not write accesses.

CS33 Intro to Computer Systems XXVI–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Page Tables
Page # Offset

V M R Prot Page Frame #

Virtual
Address

20 12

