
CS33 Intro to Computer Systems XXIX–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (2)
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Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is 
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests
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Streams in the Inet Domain (1)

• Server steps
1)  create socket

sfd = socket(AF_INET, SOCK_STREAM, 0);

sfd
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Streams in the Inet Domain (2)

• Server steps
2)  bind name to socket

bind(sfd,

  (struct sockaddr *)&my_addr, sizeof(my_addr));

sfd

128.148.47.67



CS33 Intro to Computer Systems XXIX–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (3)

• Server steps
3)  put socket in “listening mode”

int listen(int sfd, int MaxQueueLength);

sfd

128.148.47.67:7326

connection 
queue IP Address : Port Number
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Streams in the Inet Domain (4)

• Client steps
1)  create socket

cfd = socket(AF_INET, SOCK_STREAM, 0);

cfd
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Streams in the Inet Domain (5)

• Client steps
2)  bind name to socket

bind(cfd,

  (struct sockaddr *)&my_addr, sizeof(my_addr));

128.137.23.6:43

cfd
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Streams in the Inet Domain (6)

• Client steps
3)  connect to server

connect(cfd, (struct sockaddr *)&server_addr,
    sizeof(server_addr));

128.137.23.6:43

cfd sfd

128.148.47.67:7326
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Streams in the Inet Domain (7)

• Server steps
4)  accept connection

fd = accept((int)sfd, (struct sockaddr *)addr,
    (int *)&addrlen);

128.137.23.6:43

cfd sfd

128.148.47.67:7326

fd
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TCP Server (1)

int main(int argc, char *argv[ ]) {
    if (argc != 2) {
        fprintf(stderr, "Usage: port\n");
        exit(1);

    }

    int lsocket;
    struct addrinfo tcp_hints;
    struct addrinfo *result;
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TCP Server (2)

memset(&tcp_hints, 0, sizeof(tcp_hints));
    tcp_hints.ai_family = AF_INET;

    tcp_hints.ai_socktype = SOCK_STREAM;
    tcp_hints.ai_flags = AI_PASSIVE;

    int err;
    if ((err = getaddrinfo(NULL, argv[1], &tcp_hints,
          &result)) != 0) {

        fprintf(stderr,"%s\n", gai_strerror(err));

        exit(1);
    }
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TCP Server (3)

struct addrinfo *r;
    for (r = result; r != NULL; r = r->ai_next) {
        if ((lsocket =
              socket(r->ai_family, r->ai_socktype,

              r->ai_protocol)) < 0) {

            continue;
        }
        if (bind(lsocket, r->ai_addr, r->ai_addrlen) >= 0) {
            break;
        }
        close(lsocket);

    }
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TCP Server (4)

if (r == NULL) {
        fprintf(stderr, "Could not find local interface %s\n");

        exit(1);
    }

    freeaddrinfo(result);

    if (listen(lsocket, 50) < 0) {
        perror("listen");

        exit(1);
    }
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TCP Server (5)

while (1) {
        int csock;
        struct sockaddr client_addr;
        int client_len = sizeof(client_addr);

        csock = accept(lsocket, &client_addr, &client_len);

        if (csock == -1) {
            perror("accept");

            exit(1);

        }
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TCP Server (6)

char host_name[256];
        char serv_name[256];
        int err;
        if ((err = getnameinfo(&client_addr,
              client_len, host_name, sizeof(host_name),
              serv_name, sizeof(serv_name), 0))) {
            fprintf(stderr, "%s/n", gai_strerror(err));
            exit(1);

        }

        printf("received connection from %s port %s\n",
              host_name, serv_name);
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TCP Server (7)

switch (fork()) {
        case -1:
            perror("fork");
            exit(1);

        case 0:
            serve(csock);

            exit(0);
        default: 
            close(csock);

            break;
        }

    }

    return 0;
}
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TCP Server (8)

void serve(int fd) {
    char buf[1024];
    int count;

    while ((count = read(fd, buf, 1024)) > 0) {
        write(1, buf, count);

    }
    if (count == -1) {
        perror("read");

        exit(1);
    }

    printf("connection terminated\n");

}
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TCP Client (1)

int main(int argc, char *argv[]) {
    int s;
    int sock;
    struct addrinfo hints;
    struct addrinfo *result;
    struct addrinfo *rp;
    char buf[1024];

    if (argc != 3) {
        fprintf(stderr, "Usage: tcpClient host port\n");
        exit(1);

    }
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TCP Client (2)

memset(&hints, 0, sizeof(hints));
    hints.ai_family = AF_INET;

    hints.ai_socktype = SOCK_STREAM;

    if ((s=getaddrinfo(argv[1], argv[2], &hints, &result))
          != 0) {

        fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
        exit(1);

    }
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TCP Client (3)

for (rp = result; rp != NULL; rp = rp->ai_next) {
        if ((sock = socket(rp->ai_family, rp->ai_socktype,

              rp->ai_protocol)) < 0) {
            continue;
        }

        if (connect(sock, rp->ai_addr, rp->ai_addrlen) >= 0) {
            break;
        }

        close(sock);

    }
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TCP Client (4)

if (rp == NULL) {
        fprintf(stderr, "Could not connect to %s\n", argv[1]);

        exit(1);
    }

    freeaddrinfo(result);
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TCP Client (5)

while(fgets(buf, 1024, stdin) != 0) {
        if (write(sock, buf, strlen(buf)) < 0) {
            perror("write");
            exit(1);

        }

    }

    return 0;
}
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Quiz 1

The previous slide contains
write(sock, buf, strlen(buf))

If data is lost and must be retransmitted
a) write returns an error so the caller can 

retransmit the data.
b) nothing happens as far as the application 

code is concerned, the data is retransmitted 
automatically.

c) the receiving application has to tell the 
sending application to retransmit.
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Quiz 2

A previous slide contains
write(sock, buf, strlen(buf))

We lose the connection to the other party 
(perhaps a network cable is cut).
a) write returns an error so the caller can 

reconnect, if desired.
b) nothing happens as far as the application 

code is concerned, the connection is 
reestablished automatically.

c) the receiving application has to tell the 
sending application to reconnect.
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CS 33
Event-Based Programming
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Event Handling

Obj 1 Obj 4

Obj 6

Obj 3
Obj 2

Obj 5

Server
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Stream Relay

Relay

Source

Sink

Sink

Source

UDP

UDP

UDP

UDP
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Solution?

while(…) {
   size = read(left, buf, sizeof(buf));
   write(right, buf, size);
   size = read(right, buf, sizeof(buf));
   write(left, buf, size);
}
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Select System Call

int select(
  int nfds,         // size of fd_sets
  fd_set *readfds,  // descriptors of interest
                    // for reading
  fd_set *writefds, // descriptors of interest
                    // for writing
  fd_set *excpfds,  // descriptors of interest
                    // for exceptional events
  struct timeval *timeout
                    // max time to wait
);
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Relay Sketch
void relay(int left, int right) {
   fd_set rd, wr;
   int maxFD = max(left, right) + 1;
   FD_ZERO(&rd); FD_SET(left, &rd); FD_SET(right, &rd);
   FD_ZERO(&wr); FD_SET(left, &wr); FD_SET(right, &wr);
   while (1) {
      select(maxFD, &rd, &wr, 0, 0);
      if (FD_ISSET(left, &rd))
         read(left, bufLR, sizeof(message_t));
      if (FD_ISSET(right, &rd))
         read(right, bufRL, sizeof(message_t));
      if (FD_ISSET(right, &wr))
         write(right, bufLR, sizeof(message_t));
      if (FD_ISSET(left, &rd))
         write(left, bufRL, sizeof(message_t));
   }
}
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Relay (1)

void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
  message_t bufLR;
  message_t bufRL;
  int maxFD = max(left, right) + 1;
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Relay (2)

while(1) {
    FD_ZERO(&rd);
    FD_ZERO(&wr);
    if (left_read)
      FD_SET(left, &rd);
    if (right_read)
      FD_SET(right, &rd);
    if (left_write)
      FD_SET(left, &wr);
    if (right_write)
      FD_SET(right, &wr);

    select(maxFD, &rd, &wr, 0, 0);
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Relay (3)

if (FD_ISSET(left, &rd)) {
      read(left, bufLR, sizeof(message_t));
      left_read = 0;
      right_write = 1;
    }
    if (FD_ISSET(right, &rd)) {
      read(right, bufRL, sizeof(message_t));
      right_read = 0;
      left_write = 1;
    }
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Relay (4)

if (FD_ISSET(right, &wr)) {
      write(right, bufLR, sizeof(message_t));
      left_read = 1;
      right_write = 0;
    }
    if (FD_ISSET(left, &wr)) {
      write(left, bufRL, sizeof(message_t));
      right_read = 1;
      left_write = 0;
    }
  }
  return 0;
}
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CS 33
Multithreaded Programming (1)
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Multithreaded Programming

• A thread is a virtual processor
– an independent agent executing instructions

• Multiple threads
– multiple independent agents executing instructions



CS33 Intro to Computer Systems XXIX–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Threads?

• Many things are easier to do with threads
• Many things run faster with threads
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A Simple Example

Relay

Source

Sink

Sink

Source

pipe

pipe

pipe

pipe
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Life Without Threads
void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 int sizeLR, sizeRL, wret;
    char bufLR[BSIZE], bufRL[BSIZE];
    char *bufpR, *bufpL;
    int maxFD = max(left, right) + 1;

    fcntl(left, F_SETFL, O_NONBLOCK);
    fcntl(right, F_SETFL, O_NONBLOCK);

 while(1) {
     FD_ZERO(&rd);
     FD_ZERO(&wr);
     if (left_read)
      FD_SET(left, &rd);
     if (right_read)
      FD_SET(right, &rd);
     if (left_write)
      FD_SET(left, &wr);
     if (right_write)
      FD_SET(right, &wr);

     select(maxFD, &rd, &wr, 0, 0);

if (FD_ISSET(left, &rd)) {
      sizeLR = read(left, bufLR, BSIZE);
      left_read = 0;
      right_write = 1;
      bufpR = bufLR;
    }
    if (FD_ISSET(right, &rd)) {
      sizeRL = read(right, bufRL, BSIZE);
      right_read = 0;
      left_write = 1;
      bufpL = bufRL;
    }
 if (FD_ISSET(right, &wr)) {
      if ((wret = write(right, bufpR, sizeLR)) == sizeLR) {
        left_read = 1; right_write = 0;
      } else {
        sizeLR -= wret; bufpR += wret;
      }
    }
    if (FD_ISSET(left, &wr)) {
      if ((wret = write(left, bufpL, sizeRL)) == sizeRL) {
        right_read = 1; left_write = 0;
      } else {
        sizeRL -= wret; bufpL += wret;
      }
    }
  }
  return 0;
}
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Life With Threads

void copy(int source, int destination) {
  struct args *targs = args;

  char buf[BSIZE];
  

  while(1) {
    int len = read(source, buf, BSIZE);
    write(destination, buf, len);

  }

}
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Quiz 3

The multi-threaded program, compared to the 
single-threaded program that uses select, is
a) always faster
b) always faster if there is more than one 

processor
c) about the same for one processor; faster for 

more than one processor
d) often slower
e) always slower
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Processes vs. Threads

Process 1 Process 2 Process 3
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Single-Threaded
Database Server

Database

Requests
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Multithreaded Database Server

Database

Requests
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Single-Core Chips
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Dual-Core Chips
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Multi-Core Chips
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Good News/Bad News

J Good news
– multi-threaded programs can take advantage of 

multi-core chips (single-threaded programs cannot)
L Bad news

– it’s not easy
» must have parallel algorithm

• employing at least as many threads as 
processors

• threads must keep processors busy
– doing useful work
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Matrix Multiplication Revisited
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n

p

m

p

A B C
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Standards

• POSIX 1003.4a ® 1003.1c ® 1003.1j

• Microsoft
– Win32/64


