
CS33 Intro to Computer Systems XXIX–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (2)

CS33 Intro to Computer Systems XXIX–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests

CS33 Intro to Computer Systems XXIX–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (1)

• Server steps
1) create socket

sfd = socket(AF_INET, SOCK_STREAM, 0);

sfd

CS33 Intro to Computer Systems XXIX–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (2)

• Server steps
2) bind name to socket

bind(sfd,

 (struct sockaddr *)&my_addr, sizeof(my_addr));

sfd

128.148.47.67

CS33 Intro to Computer Systems XXIX–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (3)

• Server steps
3) put socket in “listening mode”

int listen(int sfd, int MaxQueueLength);

sfd

128.148.47.67:7326

connection
queue IP Address : Port Number

CS33 Intro to Computer Systems XXIX–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (4)

• Client steps
1) create socket

cfd = socket(AF_INET, SOCK_STREAM, 0);

cfd

CS33 Intro to Computer Systems XXIX–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (5)

• Client steps
2) bind name to socket

bind(cfd,

 (struct sockaddr *)&my_addr, sizeof(my_addr));

128.137.23.6:43

cfd

CS33 Intro to Computer Systems XXIX–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (6)

• Client steps
3) connect to server

connect(cfd, (struct sockaddr *)&server_addr,
 sizeof(server_addr));

128.137.23.6:43

cfd sfd

128.148.47.67:7326

CS33 Intro to Computer Systems XXIX–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (7)

• Server steps
4) accept connection

fd = accept((int)sfd, (struct sockaddr *)addr,
 (int *)&addrlen);

128.137.23.6:43

cfd sfd

128.148.47.67:7326

fd

CS33 Intro to Computer Systems XXIX–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (1)

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: port\n");
 exit(1);

 }

 int lsocket;
 struct addrinfo tcp_hints;
 struct addrinfo *result;

CS33 Intro to Computer Systems XXIX–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (2)

memset(&tcp_hints, 0, sizeof(tcp_hints));
 tcp_hints.ai_family = AF_INET;

 tcp_hints.ai_socktype = SOCK_STREAM;
 tcp_hints.ai_flags = AI_PASSIVE;

 int err;
 if ((err = getaddrinfo(NULL, argv[1], &tcp_hints,
 &result)) != 0) {

 fprintf(stderr,"%s\n", gai_strerror(err));

 exit(1);
 }

CS33 Intro to Computer Systems XXIX–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (3)

struct addrinfo *r;
 for (r = result; r != NULL; r = r->ai_next) {
 if ((lsocket =
 socket(r->ai_family, r->ai_socktype,

 r->ai_protocol)) < 0) {

 continue;
 }
 if (bind(lsocket, r->ai_addr, r->ai_addrlen) >= 0) {
 break;
 }
 close(lsocket);

 }

CS33 Intro to Computer Systems XXIX–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (4)

if (r == NULL) {
 fprintf(stderr, "Could not find local interface %s\n");

 exit(1);
 }

 freeaddrinfo(result);

 if (listen(lsocket, 50) < 0) {
 perror("listen");

 exit(1);
 }

CS33 Intro to Computer Systems XXIX–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (5)

while (1) {
 int csock;
 struct sockaddr client_addr;
 int client_len = sizeof(client_addr);

 csock = accept(lsocket, &client_addr, &client_len);

 if (csock == -1) {
 perror("accept");

 exit(1);

 }

CS33 Intro to Computer Systems XXIX–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (6)

char host_name[256];
 char serv_name[256];
 int err;
 if ((err = getnameinfo(&client_addr,
 client_len, host_name, sizeof(host_name),
 serv_name, sizeof(serv_name), 0))) {
 fprintf(stderr, "%s/n", gai_strerror(err));
 exit(1);

 }

 printf("received connection from %s port %s\n",
 host_name, serv_name);

CS33 Intro to Computer Systems XXIX–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (7)

switch (fork()) {
 case -1:
 perror("fork");
 exit(1);

 case 0:
 serve(csock);

 exit(0);
 default:
 close(csock);

 break;
 }

 }

 return 0;
}

CS33 Intro to Computer Systems XXIX–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Server (8)

void serve(int fd) {
 char buf[1024];
 int count;

 while ((count = read(fd, buf, 1024)) > 0) {
 write(1, buf, count);

 }
 if (count == -1) {
 perror("read");

 exit(1);
 }

 printf("connection terminated\n");

}

CS33 Intro to Computer Systems XXIX–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Client (1)

int main(int argc, char *argv[]) {
 int s;
 int sock;
 struct addrinfo hints;
 struct addrinfo *result;
 struct addrinfo *rp;
 char buf[1024];

 if (argc != 3) {
 fprintf(stderr, "Usage: tcpClient host port\n");
 exit(1);

 }

CS33 Intro to Computer Systems XXIX–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Client (2)

memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET;

 hints.ai_socktype = SOCK_STREAM;

 if ((s=getaddrinfo(argv[1], argv[2], &hints, &result))
 != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
 exit(1);

 }

CS33 Intro to Computer Systems XXIX–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Client (3)

for (rp = result; rp != NULL; rp = rp->ai_next) {
 if ((sock = socket(rp->ai_family, rp->ai_socktype,

 rp->ai_protocol)) < 0) {
 continue;
 }

 if (connect(sock, rp->ai_addr, rp->ai_addrlen) >= 0) {
 break;
 }

 close(sock);

 }

CS33 Intro to Computer Systems XXIX–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Client (4)

if (rp == NULL) {
 fprintf(stderr, "Could not connect to %s\n", argv[1]);

 exit(1);
 }

 freeaddrinfo(result);

CS33 Intro to Computer Systems XXIX–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

TCP Client (5)

while(fgets(buf, 1024, stdin) != 0) {
 if (write(sock, buf, strlen(buf)) < 0) {
 perror("write");
 exit(1);

 }

 }

 return 0;
}

CS33 Intro to Computer Systems XXIX–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

The previous slide contains
write(sock, buf, strlen(buf))

If data is lost and must be retransmitted
a) write returns an error so the caller can

retransmit the data.
b) nothing happens as far as the application

code is concerned, the data is retransmitted
automatically.

c) the receiving application has to tell the
sending application to retransmit.

CS33 Intro to Computer Systems XXIX–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

A previous slide contains
write(sock, buf, strlen(buf))

We lose the connection to the other party
(perhaps a network cable is cut).
a) write returns an error so the caller can

reconnect, if desired.
b) nothing happens as far as the application

code is concerned, the connection is
reestablished automatically.

c) the receiving application has to tell the
sending application to reconnect.

CS33 Intro to Computer Systems XXIX–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Event-Based Programming

CS33 Intro to Computer Systems XXIX–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Event Handling

Obj 1 Obj 4

Obj 6

Obj 3
Obj 2

Obj 5

Server

CS33 Intro to Computer Systems XXIX–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stream Relay

Relay

Source

Sink

Sink

Source

UDP

UDP

UDP

UDP

CS33 Intro to Computer Systems XXIX–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution?

while(…) {
 size = read(left, buf, sizeof(buf));
 write(right, buf, size);
 size = read(right, buf, sizeof(buf));
 write(left, buf, size);
}

CS33 Intro to Computer Systems XXIX–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Select System Call

int select(
 int nfds, // size of fd_sets
 fd_set *readfds, // descriptors of interest
 // for reading
 fd_set *writefds, // descriptors of interest
 // for writing
 fd_set *excpfds, // descriptors of interest
 // for exceptional events
 struct timeval *timeout
 // max time to wait
);

CS33 Intro to Computer Systems XXIX–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relay Sketch
void relay(int left, int right) {
 fd_set rd, wr;
 int maxFD = max(left, right) + 1;
 FD_ZERO(&rd); FD_SET(left, &rd); FD_SET(right, &rd);
 FD_ZERO(&wr); FD_SET(left, &wr); FD_SET(right, &wr);
 while (1) {
 select(maxFD, &rd, &wr, 0, 0);
 if (FD_ISSET(left, &rd))
 read(left, bufLR, sizeof(message_t));
 if (FD_ISSET(right, &rd))
 read(right, bufRL, sizeof(message_t));
 if (FD_ISSET(right, &wr))
 write(right, bufLR, sizeof(message_t));
 if (FD_ISSET(left, &rd))
 write(left, bufRL, sizeof(message_t));
 }
}

CS33 Intro to Computer Systems XXIX–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relay (1)

void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 message_t bufLR;
 message_t bufRL;
 int maxFD = max(left, right) + 1;

CS33 Intro to Computer Systems XXIX–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relay (2)

while(1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (left_read)
 FD_SET(left, &rd);
 if (right_read)
 FD_SET(right, &rd);
 if (left_write)
 FD_SET(left, &wr);
 if (right_write)
 FD_SET(right, &wr);

 select(maxFD, &rd, &wr, 0, 0);

CS33 Intro to Computer Systems XXIX–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relay (3)

if (FD_ISSET(left, &rd)) {
 read(left, bufLR, sizeof(message_t));
 left_read = 0;
 right_write = 1;
 }
 if (FD_ISSET(right, &rd)) {
 read(right, bufRL, sizeof(message_t));
 right_read = 0;
 left_write = 1;
 }

CS33 Intro to Computer Systems XXIX–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relay (4)

if (FD_ISSET(right, &wr)) {
 write(right, bufLR, sizeof(message_t));
 left_read = 1;
 right_write = 0;
 }
 if (FD_ISSET(left, &wr)) {
 write(left, bufRL, sizeof(message_t));
 right_read = 1;
 left_write = 0;
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXIX–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming (1)

CS33 Intro to Computer Systems XXIX–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multithreaded Programming

• A thread is a virtual processor
– an independent agent executing instructions

• Multiple threads
– multiple independent agents executing instructions

CS33 Intro to Computer Systems XXIX–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Why Threads?

• Many things are easier to do with threads
• Many things run faster with threads

CS33 Intro to Computer Systems XXIX–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Simple Example

Relay

Source

Sink

Sink

Source

pipe

pipe

pipe

pipe

CS33 Intro to Computer Systems XXIX–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Life Without Threads
void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 int sizeLR, sizeRL, wret;
 char bufLR[BSIZE], bufRL[BSIZE];
 char *bufpR, *bufpL;
 int maxFD = max(left, right) + 1;

 fcntl(left, F_SETFL, O_NONBLOCK);
 fcntl(right, F_SETFL, O_NONBLOCK);

 while(1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (left_read)
 FD_SET(left, &rd);
 if (right_read)
 FD_SET(right, &rd);
 if (left_write)
 FD_SET(left, &wr);
 if (right_write)
 FD_SET(right, &wr);

 select(maxFD, &rd, &wr, 0, 0);

if (FD_ISSET(left, &rd)) {
 sizeLR = read(left, bufLR, BSIZE);
 left_read = 0;
 right_write = 1;
 bufpR = bufLR;
 }
 if (FD_ISSET(right, &rd)) {
 sizeRL = read(right, bufRL, BSIZE);
 right_read = 0;
 left_write = 1;
 bufpL = bufRL;
 }
 if (FD_ISSET(right, &wr)) {
 if ((wret = write(right, bufpR, sizeLR)) == sizeLR) {
 left_read = 1; right_write = 0;
 } else {
 sizeLR -= wret; bufpR += wret;
 }
 }
 if (FD_ISSET(left, &wr)) {
 if ((wret = write(left, bufpL, sizeRL)) == sizeRL) {
 right_read = 1; left_write = 0;
 } else {
 sizeRL -= wret; bufpL += wret;
 }
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXIX–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Life With Threads

void copy(int source, int destination) {
 struct args *targs = args;

 char buf[BSIZE];

 while(1) {
 int len = read(source, buf, BSIZE);
 write(destination, buf, len);

 }

}

CS33 Intro to Computer Systems XXIX–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

The multi-threaded program, compared to the
single-threaded program that uses select, is
a) always faster
b) always faster if there is more than one

processor
c) about the same for one processor; faster for

more than one processor
d) often slower
e) always slower

CS33 Intro to Computer Systems XXIX–42 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Processes vs. Threads

Process 1 Process 2 Process 3

CS33 Intro to Computer Systems XXIX–43 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Single-Threaded
Database Server

Database

Requests

CS33 Intro to Computer Systems XXIX–44 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multithreaded Database Server

Database

Requests

CS33 Intro to Computer Systems XXIX–45 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Single-Core Chips

CS33 Intro to Computer Systems XXIX–46 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dual-Core Chips

CS33 Intro to Computer Systems XXIX–47 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multi-Core Chips

CS33 Intro to Computer Systems XXIX–48 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Good News/Bad News

J Good news
– multi-threaded programs can take advantage of

multi-core chips (single-threaded programs cannot)
L Bad news

– it’s not easy
» must have parallel algorithm

• employing at least as many threads as
processors

• threads must keep processors busy
– doing useful work

CS33 Intro to Computer Systems XXIX–49 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Revisited

× =

m

n

n

p

m

p

A B C

CS33 Intro to Computer Systems XXIX–50 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Standards

• POSIX 1003.4a ® 1003.1c ® 1003.1j

• Microsoft
– Win32/64

