
CS33 Intro to Computer Systems XXXI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming (2)

To create a thread, one calls the pthread_create function. This skeleton code for a
server application creates a number of threads, each to handle client requests. If
pthread_create returns successfully (i.e., returns 0), then a new thread has been
created that is now executing independently of the caller. This new thread has an ID
that is returned via the first parameter. The second parameter is a pointer to an
attributes structure that defines various properties of the thread. Usually, we can get
by with the default properties, which we specify by supplying a null pointer (we discuss
this in more detail later). The third parameter is the address of the function in which our
new thread should start its execution. The last parameter is the argument that is
actually passed to the first function of the thread.

If pthread_create fails, it returns a code indicating the cause of the failure.

This example in the slide is a sketch of a multi-threaded matrix multiplication program
in which we have one thread per row of the product matrix.

CS33 Intro to Computer Systems XXXI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating Threads

long A[M][N], B[N][P], C[M][P];
 ...
 for (i=0; i<M; i++) // create worker threads
 pthread_create(&thr[i], 0, matmult, i);

 ...

void *matmult(void *arg) {
 long i = (long)arg;
 // compute row i of the product C of A and B
 ...
}

We’d like the first thread to be able to print the resulting product matrix C, but it
shouldn’t attempt to do this until the worker threads have terminated. We have it call
pthread_join for each of the worker threads, causing it to wait for each worker to
terminate.

CS33 Intro to Computer Systems XXXI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

When Is It Finished?

long A[M][N], B[N][P], C[M][P];
 ...
 for (i=0; i<M; i++) // create worker threads
 pthread_create(&thr[i], 0, matmult, i));

 for (i=0; i<M; i++) // wait for termination
 pthread_join(thr[i], 0);

 printResult(C); // shouldn’t do this until
 // workers have terminated

In this series of slide we show the complete matrix-multiplication program.

This slide shows the necessary includes, global declarations, and the beginning of the
main function.

CS33 Intro to Computer Systems XXXI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example (1)

#include <stdio.h>
#include <pthread.h>
#include <string.h>

#define M 3
#define N 4
#define P 5

long A[M][N];
long B[N][P];
long C[M][P];

void *matmult(void *);

main() {
 long i;
 pthread_t thr[M];
 int error;

 // initialize the matrices
 ...

Here we have the remainder of main. It creates a number of threads, one for each row of
the result matrix, waits for all of them to terminate, then prints the results (this last step
is not spelled out). Note that we check for errors when calling pthread_create. (It is
important to check for errors after calls to almost all of the pthread functions, but we
normally omit it in the slides for lack of space.) For reasons discussed later, the pthread
calls, unlike Unix system calls, do not return -1 if there is an error, but return the error
code itself (and return zero on success). Thus one cannot use perror to print error
messages (since perror uses errno to determine what the error was) Instead, one passes
the error code to strerror, which returns a pointer to the error message.

So that the first thread is certain that all the other threads have terminated, it must call
pthread_join on each of them.

CS33 Intro to Computer Systems XXXI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example (2)

for (i=0; i<M; i++) { // create worker threads
 if (error = pthread_create(
 &thr[i],
 0,
 matmult,
 (void *)i)) {
 fprintf(stderr, "pthread_create: %s", strerror(error));
 exit(1);
 }
 }

 for (i=0; i<M; i++) // wait for workers to finish their jobs
 pthread_join(thr[i], 0)

 /* print the results ... */
}

Here is the code executed by each of the threads. It’s pretty straightforward: it merely
computes a row of the result matrix.

Note how the argument is explicitly converted from void * to long.

This code does not make optimal use of the cache. How can it be restructured so it
does?

CS33 Intro to Computer Systems XXXI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example (3)

void *matmult(void *arg) {
 long row = (long)arg;
 long col;
 long i;
 long t;

 for (col=0; col < P; col++) {
 t = 0;
 for (i=0; i<N; i++)
 t += A[row][i] * B[i][col];
 C[row][col] = t;
 }
 return(0);
}

Providing the –pthread flag to gcc is equivalent to providing all the following flags:

• -lpthread: include libpthread.so — the POSIX threads library

• -D_REENTRANT: defines certain things relevant to threads in stdio.h — we cover
this later.

• -Dotherstuff, where “otherstuff” is a variety of flags required to get the correct
versions of declarations for POSIX threads in a number of header (.h) files.

CS33 Intro to Computer Systems XXXI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It

% gcc –o mat mat.c -pthread

The slide shows the performance of multithreaded integer matrix multiplication on a
Mac Studio with a 10-core Apple M1 Max chip. Two 2048x2048 matrices were
multiplied. The x axis shows the number of threads used, the y axis shows the time in
minutes. The algorithms are from lecture 17. The ijk approach results in 1.125 cache
misses per iteration, while the kij approach results in .25 cache misses per iteration.
What’s interesting is that the speedup from using eight cores rather than just one is not
as great as the speedup from having substantially fewer cache misses per iteration.

The results from using 16 and 32 threads are about the same as from using 8 threads.

CS33 Intro to Computer Systems XXXI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Performance

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1 2 3 4 5 6 7 8

ijk approach

kij approach

A thread terminates either by calling pthread_exit or by returning from its first
function. In either case, it supplies a value that can be retrieved via a call (by some
other thread) to pthread_join. The analogy to process termination and the waitpid
system call in Unix is tempting and is correct to a certain extent — Unix’s waitpid, like
pthread_join, lets one caller synchronize with the termination of another. There is one
important difference, however: Unix has the notion of parent/child relationships among
processes. A process may wait only for its children to terminate. No such notion of
parent/child relationship is maintained among POSIX threads: one thread may wait for
the termination of any other thread in the process (though some threads cannot be
“joined” by any thread — see the next page). It is, however, important that
pthread_join be called for each joinable terminated thread — since threads that have
terminated but have not yet been joined continue to use up some resources, resources
that will be freed once the thread has been joined. The effect of multiple threads calling
pthread_join on the same target thread is “undefined” — meaning that what happens
can vary from one implementation to the next.

One should be careful to distinguish between terminating a thread and terminating a
process. With the latter, all the threads in the process are forcibly terminated. So, if
any thread in a process calls exit, the entire process is terminated, along with its
threads. Similarly, if a thread returns from main, this also terminates the entire
process, since returning from main is equivalent to calling exit. The only thread that
can legally return from main is the one that called it in the first place. All other threads
(those that did not call main) certainly do not terminate the entire process when they
return from their first functions, they merely terminate themselves.

CS33 Intro to Computer Systems XXXI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Termination

pthread_exit((void *) value);

return((void *) value);

pthread_join(thread, (void **) &value);

If no thread calls exit and no thread returns from main, then the process should
terminate once all threads have terminated (i.e., have called pthread_exit or, for
threads other than the first one, have returned from their first function). If the first
thread calls pthread_exit, it self-destructs, but does not cause the process to
terminate (unless no other threads are extant).

If there is no reason to synchronize with the termination of a thread, then it is rather a
nuisance to have to call pthread_join. Instead, one can arrange for a thread to be
detached. Such threads “vanish” when they terminate — not only do they not need to be
joined, but they cannot be joined.

CS33 Intro to Computer Systems XXXI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Detached Threads

start_servers() {
 pthread_t thread;
 int i;

 for (i=0; i<nr_of_server_threads; i++) {
 pthread_create(&thread, 0, server, 0);
 pthread_detach(thread);
 }
 ...
}

void *server(void * arg) {
 ...
}

An obvious limitation of the pthread_create interface is that one can pass only a single
argument to the first function of the new thread. In this example, we are trying to supply
code for the relay example, but we run into a problem when we try to pass two
parameters to each of the two threads.

CS33 Intro to Computer Systems XXXI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Complications
void relay(int left, int right) {
 pthread_t LRthread, RLthread;

 pthread_create(&LRthread,
 0,
 copy,
 left, right); // Can’t do this ...

 pthread_create(&RLthread,
 0,
 copy,
 right, left); // Can’t do this ...
}

To pass more than one argument to the first function of a thread, we must somehow
encode multiple arguments as one. Here we pack two arguments into a structure, then
pass the pointer to the structure.

CS33 Intro to Computer Systems XXXI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Arguments

typedef struct args {
 int src;
 int dest;
} args_t;

void relay(int left, int right) {
 args_t LRargs, RLargs;
 pthread_t LRthread, RLthread;
 ...
 pthread_create(&LRthread, 0, copy, &LRargs);

 pthread_create(&RLthread, 0, copy, &RLargs);
}

CS33 Intro to Computer Systems XXXI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Arguments

typedef struct args {
 int src;
 int dest;
} args_t;

void relay(int left, int right) {
 args_t LRargs, RLargs;
 pthread_t LRthread, RLthread;
 ...
 pthread_create(&LRthread, 0, copy, &LRargs);

 pthread_create(&RLthread, 0, copy, &RLargs);
}

Quiz 1
Does this work?

a) no
b) yes
c) it depends upon the word

size

The operating system is responsible for multiplexing the execution of threads on the
available processors. The OS’s scheduler is responsible for assigning threads to
processors (cores). Periodically, say every millisecond, each processor is interrupted and
calls upon the OS to determine if another thread should run. If so, the current thread on
the processor (core) is preempted in favor of the next thread. Assuming all threads are
treated equally, over a sufficient period of time each thread gets its fair share of available
processor time. Thus, even though a system may have only one core, all threads make
progress and give the appearance of running simultaneously.

This notion of multiplexing threads on the available processors is known as time
slicing. The amount of time that a thread runs before yielding to another is known as its
time slice. The length of time slices is typically measured in milliseconds, while the time
required for a processor to switch from one thread to another is typically measured in
microseconds.

CS33 Intro to Computer Systems XXXI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Execution

Cores

OS

Threads

To be a bit more precise about scheduling, let’s define some more (standard) terms.
Threads are in either a blocked state or a ready state: in the former they cannot be
assigned a core, in the latter they can. The scheduler determines which ready threads
should be assigned cores. Ready threads that have been assigned cores are called
running threads.

CS33 Intro to Computer Systems XXXI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiplexing Processors

Running

Ready
Blocked

Ready

Ready
BlockedRunning

Disk

Keyboard

CS33 Intro to Computer Systems XXXI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2
pthread_create(&tid, 0, tproc, (void *)1);

 pthread_create(&tid, 0, tproc, (void *)2);

 printf("T0\n");

 ...

void *tproc(void *arg) {
 printf("T%dl\n", (long)arg);
 return 0;
}

In which order are things printed?
a) indeterminate
b) T2, T1, T0
c) T0, T1, T2
d) T1, T2, T0

This function, called work, does nothing useful other than consuming cpu cycles. It
executes for a period of time that’s proportional to its argument. We use it to get an idea
of the performance cost of using threads.

If work is called with an argument of W, its loop executes W times. Suppose work is
called by each of T threads, each supplying an argument of W/T. If we sum the number
of executions of the loop over all T threads, we find that there are a total of (W/T)·T = W
executions of the loop. Thus comparing the time it takes one thread to do W iterations
with the time it takes T threads to do a total of W iterations gives us a means for
determining the cost of using threads. If, on a single core, one thread doing W iterations
takes w1 seconds, but T threads each doing W/T iterations takes w2 seconds, and w2 >
w1, then their difference is the additional time required due to the use of multiple
threads.

Recall that the volatile attribute ensures that a variable will not be stored in a register,
but that all references to it will be to memory. The reason for using the attribute here is
to make certain that the function is accessing memory in each iteration, so that we can
see the effect of this access on the execution of other threads.

CS33 Intro to Computer Systems XXXI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cost of Threads

void *work(long n) {
 volatile long x=2;

 for (long i=0; i<n; i++) {
 long oldx = x;
 x *= x;

 x /= oldx;
 }
 return 0;
}

Here’s our main function for doing the experiment described in the previous slide.

CS33 Intro to Computer Systems XXXI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cost of Threads

int main(int argc, char *argv[]) {
 long nthreads = atol(argv[1]);
 long iterations = atol(argv[2]);
 long val = iterations/nthreads;

 for (long i=0; i<nthreads; i++)
 pthread_create(&thread, 0, work,
 (void *)val);
 pthread_exit(0);
 return 0;
}

CS33 Intro to Computer Systems XXXI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cost of Threads

void *work(long n) {
 volatile long x=2;

 for (long i=0; i<n; i++) {
 long oldx = x;
 x *= x;

 x /= oldx;
 }
 return 0;
}

Not a Quiz

This code runs in time n
on a 6-core processor
when nthreads is 6. It
runs in time p on the
same processor when
nthreads is 1000.

a) n << p (slower)
b) n ≈ p (same

speed)
c) n >> p (faster)

Here we are creating a thread that has a very large local variable that, of course, is
allocated on the threadʼs stack. How can we be sure that the threadʼs stack is actually
big enough? As it turns out, the default stack size for threads in Linux is two megabytes.

CS33 Intro to Computer Systems XXXI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Problem

pthread_create(&thread, 0, start, 0);

 …

void *start(void *arg) {
 long BigArray[128*1024*1024];
 …
 return 0;
}

A number of properties of a thread can be specified via the attributes argument when
the thread is created. Some of these properties are specified as part of the POSIX
specification, others are left up to the implementation. By burying them inside the
attributes structure, we make it straightforward to add new types of properties to
threads without having to complicate the parameter list of pthread_create. To set up an
attributes structure, one must call pthread_attr_init. As seen in the next slide, one
then specifies certain properties, or attributes, of threads. One can then use the
attributes structure as an argument to the creation of any number of threads.

Note that the attributes structure only affects the thread when it is created. Modifying
an attributes structure has no effect on already-created threads, but only on threads
created subsequently with this structure as the attributes argument.

Storage may be allocated as a side effect of calling pthread_attr_init. To ensure that it is
freed, call pthread_attr_destroy with the attributes structure as argument. Note that if
the attributes structure goes out of scope, not all storage associated with it is necessarily
released — to release this storage you must call pthread_attr_destroy.

CS33 Intro to Computer Systems XXXI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Thread Attributes

pthread_t thread;
 pthread_attr_t thr_attr;

 pthread_attr_init(&thr_attr);

 ...

 /* establish some attributes */

 ...

 pthread_create(&thread, &thr_attr, startroutine, arg);

 ...

Among the attributes that can be specified is a thread’s stack size. The default
attributes structure specifies a stack size that is probably good enough for “most”
applications. How big is it? While the default stack size is not mandated by POSIX, in
Linux it is two megabytes. To establish a different stack size, use the
pthread_attr_setstacksize function, as shown in the slide.

How large a stack is necessary? The answer, of course, is that it depends. If the stack
size is too small, there is the danger that a thread will attempt to overwrite the end of its
stack. There is no problem with specifying too large a stack, except that, on a 32-bit
machine, one should be careful about using up too much address space (one thousand
threads, each with a one-megabyte stack, use a fair portion of the address space).

What happens if a thread uses more stack space than was allotted to it? It would
probably clobber memory holding another threadʼs stack, which could lead to some
rather difficult to debug problems. To guard against such happenings, The lowest-
address page of a threadʼs stack (recall that stacks grow downwards) is made
inaccessible, meaning that any reference to it will generate a fault. Thus, if the thread
references just beyond its allotted stack, there will be a fault which, though not good,
makes it clear that this thread has exceeded its stack space.

CS33 Intro to Computer Systems XXXI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stack Size

pthread_t thread;
 pthread_attr_t thr_attr;

 pthread_attr_init(&thr_attr);
 pthread_attr_setstacksize(&thr_attr, 130*1024*1024);

 ...

 pthread_create(&thread, &thr_attr, startroutine, arg);

 ...

The mutual-exclusion problem involves making certain that two things don’t happen at
once. A non-computer example arose in the fighter aircraft of World War I (pictured is a
Sopwith Camel). Due to a number of constraints (e.g., machine guns tended to jam
frequently and thus had to be close to people who could unjam them), machine guns
were mounted directly in front of the pilot. However, blindly shooting a machine gun
through the whirling propeller was not a good idea — one was apt to shoot oneself down.
At the beginning of the war, pilots politely refrained from attacking fellow pilots. A bit
later in the war, however, the Germans developed the tactic of gaining altitude on an
opponent, diving at him, turning off the engine, then firing without hitting the now-
stationary propeller. Today, this would be called coarse-grained synchronization.
Later, the Germans developed technology that synchronized the firing of the gun with
the whirling of the propeller, so that shots were fired only when the propeller blades
would not be in the way. This is perhaps the first example of a mutual-exclusion
mechanism providing fine-grained synchronization.

CS33 Intro to Computer Systems XXXI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mutual Exclusion

Here we have two threads that are reading and modifying the same variable: both are
adding one to x. Although the operation is written as a single step in terms of C code, it
might take three machine instructions, as shown in the slide. If the initial value of x is 0
and the two threads execute the code shown in the slide, we might expect that the final
value of x is 2. However, suppose the two threads execute the machine code at roughly
the same time: each loads the value of x into its register, each adds one to the contents
of the register, and each stores the result into x. The final result, of course, is that x is 1,
not 2.

CS33 Intro to Computer Systems XXXI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Threads and Mutual Exclusion

Thread 1:

 x = x+1;
 /*
 movl x,%eax

 incr %eax
 movl %eax,x
 */

Thread 2:

 x = x+1;
 /*
 movl x,%eax

 incr %eax
 movl %eax,x
 */

In this example, gcc generates an instruction that directly increments the memory
location holding x.

CS33 Intro to Computer Systems XXXI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Thread 1:

 x = x+1;
 /*
 incr x

 */

Thread 2:

 x = x+1;
 /*
 incr x

 */

Suppose the following code is compiled by gcc.
Will it still be the case that x’s value might not be
incremented by 2?

a) yes
b) no

To solve our synchronization problem, we introduce mutexes — a synchronization
construct providing mutual exclusion. A mutex is used to insure either that only one
thread is executing a particular piece of code at once (code locking) or that only one
thread is accessing a particular data structure at once (data locking). A mutex belongs
either to a particular thread or to no thread (i.e., it is either locked or unlocked). A
thread may lock a mutex by calling pthread_mutex_lock. If no other thread has the
mutex locked, then the calling thread obtains the lock on the mutex and returns.
Otherwise, it waits until no other thread has the mutex, and finally returns with the
mutex locked. There may of course be multiple threads waiting for the mutex to be
unlocked. Only one thread can lock the mutex at a time; there is no specified order for
who gets the mutex next, though the ordering is assumed to be at least somewhat “fair.”

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex).
However, it is somewhat costly to check for this, so most implementations, if they check
at all, do so only when certain degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning
PTHREAD_MUTEX_INITIALIZER to a mutex. The initial state of such initialized mutexes
is unlocked. Of course, a mutex should be initialized only once! (I.e., make certain that,
for each mutex, no more than one thread calls pthread_mutex_init.)

CS33 Intro to Computer Systems XXXI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

POSIX Threads Mutual Exclusion

pthread_mutex_t m =
 PTHREAD_MUTEX_INITIALIZER;

 // shared by both threads
int x; // ditto

 pthread_mutex_lock(&m);

 x = x+1;

 pthread_mutex_unlock(&m);

An important restriction on the use of mutexes is that the thread that locked a mutex
should be the thread that unlocks it. For a number of reasons, not the least of which is
readability and correctness, it is not good for a mutex to be locked by one thread and
then unlocked by another.

CS33 Intro to Computer Systems XXXI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Correct Usage

pthread_mutex_lock(&m);

// critical section

pthread_mutex_unlock(&m);

...

// in thread 1
pthread_mutex_lock(&m);

// critical section

return;

...
// in thread 2

pthread_mutex_unlock(&m);

Here we have enqueue and dequeue functions that can be called by multiple threads to
add and remove items from a queue. We employ a single mutex to make certain that at
most one thread is performing a queue operation at a time. This could result in a
bottleneck if there are lots of threads calling both of the functions. Thus, we might seek
a solution that employs separate mutexes for callers to enqueue and for callers to
dequeue.

Since enqueue modifies one end of the queue and dequeue modifies the other, one might
think that we could have a two-mutex solution, with one mutex protecting one end of
the queue and another mutex protecting the other. But this becomes difficult in certain
edge conditions. For example. suppose the queue contains just one item. A thread is
calling dequeue to remove that item, but at the same time another thread is calling
enqueue to add another item. With one mutex protecting the tail of the queue and
another protecting the head, we could have a situation in which the next field of the
node being enqueued refers to the node being dequeued. If we have a single mutex
ensuring mutually exclusive access to the entire queue, this is easy to prevent (the
situation can't happen in the code of the slide). But if callers to enqueue use a different
mutex than callers to dequeue, we can't easily prevent the problem (If at all).

CS33 Intro to Computer Systems XXXI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Queue

void enqueue(node_t *item) {
 pthread_mutex_lock(&mutex);
 item->next = NULL;
 if (tail == NULL) {
 head = item;
 tail = item;

 } else {
 tail->next = item;
 }
 pthread_mutex_unlock(&mutex);
}

node_t *dequeue() {
 node_t *ret;
 pthread_mutex_lock(&mutex);
 if (head == NULL) {
 ret = NULL;
 } else {
 ret = head;
 head = head->next;
 if (head == NULL)
 tail = NULL;
 }
 pthread_mutex_unlock(&mutex);

 return ret;
}

head

tail

We review some code that should be familiar to you from the malloc assignment. We
assume, for the sake of the example, that there are at least three blocks in the freelist.
(Why it’s three and not two comes up later.)

CS33 Intro to Computer Systems XXXI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block

void pull_from_freelist(fblock_t *fbp) {
 ...
 fbp->blink->flink = fbp->flink;
 fbp->flink->blink = fbp->blink;
 ...
}

However, we’d now like to modify all the malloc code so that multiple threads can use it
at the same time.

One way of doing this, which is pretty straightforward, is to employ a single mutex,
which threads must lock before doing any heap operation, and then unlock when they’re
finished. However, this approach allows only one thread to be manipulating the heap at
a time. This approach to using mutexes is called coarse-grained.

To get more advantage (in terms of speed) from using multiple threads, we’d like it to be
possible for multiple threads to be manipulating the heap at once. To accomplish this,
each block has a mutex inside of it. To do anything to this block (such as pull it from the
free list or add it to the free list), the thread doing so must lock the block’s mutex, then,
of course, unlock it when done. This approach to using mutexes is called fine-grained.

CS33 Intro to Computer Systems XXXI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Parallelizing It

• Coarse grained
–one mutex for the

heap
– threads lock the

mutex before
doing any
operation
–unlock it

afterwards
–only one thread at

a time

• Fine grained
–one mutex for

each block
– threads lock

mutexes of only
the blocks they
are using
–multiple threads

at a time

Here’s the modified code for pull_from_freelist, using coarse-grained synchronization.

CS33 Intro to Computer Systems XXXI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Coarse
Grained

void pull_from_freelist(fblock_t *fbp) {
 pthread_mutex_lock(&flist_mutex);
 ...
 fbp->blink->flink = fbp->flink;
 fbp->flink->blink = fbp->blink;
 ...

 pthread_mutex_unlock(&flist_mutex);
}

Let’s try a similar approach for the fine-grained approach.

However, we can see an immediate problem: the thread executing this code will not only
modify *fbp, but also its predecessor and successor blocks in the freelist.

CS33 Intro to Computer Systems XXXI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (1)

void pull_from_freelist(fblock_t *fbp) {
 pthread_mutex_lock(&fpp->mutex);
 ...
 fbp->blink->flink = fbp->flink;
 fbp->flink->blink = fbp->blink;
 ...

 pthread_mutex_unlock(&fpp->mutex);
}

So, we add code to lock and unlock the mutexes of the adjacent blocks.

CS33 Intro to Computer Systems XXXI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (2)

void pull_from_freelist(fblock_t *fbp) {
 pthread_mutex_lock(&fpp->mutex);
 ...
 pthread_mutex_lock(&fpp->blink->mutex);
 fbp->blink->flink = fbp->flink;
 pthread_mutex_lock(&fpp->flink->mutex);

 fbp->flink->blink = fbp->blink;
 ...
 pthread_mutex_unlock(&fpp->blink->mutex);
 pthread_mutex_unlock(&fpp->flink->mutex);
 pthread_mutex_unlock(&fpp->mutex);

}

Pictorially, our thread first locks the mutex on *fbp (the middle block), then its
predecessor and then its successor.

CS33 Intro to Computer Systems XXXI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

But suppose other threads are calling pull_from_freelist at the same time. Let’s say that
thread 1 is pulling the middle block, thread 2 is pulling the upper block, and thread 3 is
pulling the lower block.

All three threads have locked the mutex on the block they’re pulling. Thread one tries to
lock the mutex on the upper block (once it successfully locks it, then it will try to lock
the mutex on the lower block). However, thread 2 has already locked the mutex on the
upper block, and won’t unlock it until after it locks the mutex on the middle block. But
thread 1 won’t unlock it until it locks the mutex on the upper block (not to mention the
lower block).

So, we’re stuck. threads 1 and 2 (as well as 3) won’t ever be able to lock all the mutexes
they need, and, because of this, can’t make any further progress. This phenomenon is
called deadlock.

CS33 Intro to Computer Systems XXXI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

In this example our threads are using two mutexes to control access to two different
objects. Thread 1, executing func1, first takes mutex 1, then, while still holding mutex
1, obtains mutex 2. Thread 2, executing func2, first takes mutex 2, then, while still
holding mutex 2, obtains mutex 1. However, things do not always work out as planned.
If thread 1 obtains mutex 1 and, at about the same time, thread 2 obtains mutex 2, then
if thread 1 attempts to take mutex 2 and thread 2 attempts to take mutex 1, we have a
deadlock.

CS33 Intro to Computer Systems XXXI–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Taking Multiple Locks

func1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

func2() {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

