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CS 33
Multithreaded Programming II



Let’s try a similar approach for the fine-grained approach.

However, we can see an immediate problem: the thread executing this code will not only 
modify *fbp, but also its predecessor and successor blocks in the freelist.
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Removing a Freelist Block: Fine 
Grained (1)

void pull_from_freelist(fblock_t *fbp) {
    pthread_mutex_lock(&fpp->mutex);
    ...
    fbp->blink->flink = fbp->flink;
    fbp->flink->blink = fbp->blink;
    ...

    pthread_mutex_unlock(&fpp->mutex);
}



So, we add code to lock and unlock the mutexes of the adjacent blocks.
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Removing a Freelist Block: Fine 
Grained (2)

void pull_from_freelist(fblock_t *fbp) {
    pthread_mutex_lock(&fpp->mutex);
    ...
    pthread_mutex_lock(&fpp->blink->mutex);
    fbp->blink->flink = fbp->flink;
    pthread_mutex_lock(&fpp->flink->mutex);

    fbp->flink->blink = fbp->blink;
    ...
    pthread_mutex_unlock(&fpp->blink->mutex);
    pthread_mutex_unlock(&fpp->flink->mutex);
    pthread_mutex_unlock(&fpp->mutex);

}



Pictorially, our thread first locks the mutex on *fbp (the middle block), then its 
predecessor and then its successor.
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Multiple Pulls



But suppose other threads are calling pull_from_freelist at the same time. Let’s say that 
thread 1 is pulling the middle block, thread 2 is pulling the upper block, and thread 3 is 
pulling the lower block.

All three threads have locked the mutex on the block they’re pulling. Thread one tries to 
lock the mutex on the upper block (once it successfully locks it, then it will try to lock 
the mutex on the lower block). However, thread 2 has already locked the mutex on the 
upper block, and won’t unlock it until after it locks the mutex on the middle block. But 
thread 1 won’t unlock it until it locks the mutex on the upper block (not to mention the 
lower block).

So, we’re stuck. threads 1 and 2 (as well as 3) won’t ever be able to lock all the mutexes 
they need, and, because of this, can’t make any further progress. This phenomenon is 
called deadlock.
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Multiple Pulls



In this example our threads are using two mutexes to control access to two different 
objects. Thread 1, executing func1, first takes mutex 1, then, while still holding mutex 
1, obtains mutex 2. Thread 2, executing func2, first takes mutex 2, then, while still 
holding mutex 2, obtains mutex 1. However, things do not always work out as planned. 
If thread 1 obtains mutex 1 and, at about the same time, thread 2 obtains mutex 2, then 
if thread 1 attempts to take mutex 2 and thread 2 attempts to take mutex 1, we have a 
deadlock.
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Taking Multiple Locks

func1( ) {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

func2( ) {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}



Deadlock results when there are circularities in dependencies. In the slide, mutex 1 is 
held by thread a, which is waiting to take mutex 2. However, thread b is holding mutex 
2, waiting to take mutex 1. If we can make certain that such circularities never happen, 
there can’t possibly be deadlock.
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If all threads take locks in the same order, deadlock cannot happen.

How can we modify our pull_from_freelist code to use this approach (of all threads 
taking locks in the same order)?
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Taking Multiple Locks, Safely

proc1( ) {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2( ) {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}



The problem we’ve been looking at is a special case of what’s known as the “dining philosophers 
problem”, posed by Edsger Dijkstra in EWD310, first published as Hierarchical Ordering of 
Sequential Processes in Operating Systems Techniques, C.A.R. Hoare and R.H. Perrot, Eds., 
Academic Press, New York, 1972. The idea is that we have five philosophers sitting around a table. 
At the center of the table is a plate of spaghetti. Between each pair of philosophers is a single 
chopstick (Dijkstra’s original formulation used forks, but chopsticks make more sense). The 
algorithm of a philosopher is:

while (1) {

  think();

  when available

     grab chopstick from one side();

  when available

      grab chopstick from the other side();

  eat some spaghetti();

  put chopsticks down();

}

How long each operation takes varies. Which chopstick is grabbed first is not specified, but if each 
philosopher grabs their right chopstick first, they may starve to death. There are many subtle 
issues involved in its solution. (It has many, none of which are as interesting as the problem itself.)

Philosophers clockwise from top: Laozi, Swami Vivekananda, Aristotle, Mary Wollstonecraft, Zara 
Yacob.
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Dining Philosophers Problem
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Practical Issues with Mutexes

• Used a lot in multithreaded programs
– speed is really important

» shouldn’t slow things down much in the success 
case

– checking for errors slows things down (a lot)
» thus errors aren’t checked by default



The functions pthread_mutex_init and pthread_mutex_destroy are supplied to 
initialize and to destroy a mutex. (They do not allocate or free the storage for the mutex 
data structure, but in some implementations they might allocate and free storage 
referred to by the mutex data structure.) As with threads, an attribute structure 
encapsulates the various parameters that might apply to the mutex. The functions 
pthread_mutexattr_init and pthread_mutexattr_destroy control the initialization and 
destruction of these attribute structures, as we see a few slides from now. For most 
purposes, the default attributes are fine and a NULL attrp can be provided to the 
pthread_mutex_init routine.

Note that, as we’ve already seen, a mutex that’s allocated statically may be initialized 
with PTHREAD_MUTEX_INITIALIZER.
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Set Up

int pthread_mutex_init(pthread_mutex_t *mutexp,
   pthread_mutexattr_t *attrp)

int pthread_mutex_destroy(pthread_mutex_t *mutexp)

int pthread_mutexattr_init(pthread_mutexattr_t *attrp)

int pthread_mutexattr_destroy(pthread_mutexattr_t *attrp)



In the example at the top of the slide, we have mistyped the name of the mutex in the 
second call to pthread_mutex_lock. The result will be that when pthread_mutex_lock 
is called for the second time, there will be immediate deadlock, since the caller is 
attempting to lock a mutex that is already locked, but the only thread who can unlock 
that mutex is the caller.

In the example at the bottom of the slide, we have again mistyped the name of a mutex, 
but this time for a pthread_mutex_unlock call. If m2 is not currently locked by some 
thread, unlocking will have unpredictable results, possibly fatal. If m2 is locked by some 
thread, again there will be unpredictable results, since a mutex that was thought to be 
locked (and protecting some data structure) is now unlocked. When the thread who 
locked it attempts to unlock it, the result will be even further unpredictability.
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Stupid (i.e., Common) Mistakes ...

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m1);
 // really meant to lock m2 ...

pthread_mutex_lock(&m1);
  ...
pthread_mutex_unlock(&m2);
 // really meant to unlock m1 ...



Checking for some sorts of mutex-related errors is relatively easy to do at runtime 
(though checking for all possible forms of deadlock is prohibitively expensive). However, 
since mutexes are used so frequently, even a little bit of extra overhead for runtime error 
checking is often thought to be too much. Thus, if done at all, runtime error checking is 
an optional feature. One “turns on” the feature for a particular mutex by initializing it to 
be of type “ERRORCHECK,” as shown in the slide. For mutexes initialized in this way, 
pthread_mutex_lock checks to make certain that it is not attempting to lock a mutex 
that is already locked by the calling thread; pthread_mutex_unlock checks to make 
certain that the mutex being unlocked is currently locked by the calling thread.

Note that mutexes with the error-check attribute are more expensive than normal 
mutexes, since they must keep track of which thread, if any, has the mutex locked. (For 
normal mutexes, just a single bit must be maintained for the state of the mutex, which 
is either locked or unlocked.)
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Runtime Error Checking

pthread_mutexattr_t err_chk_attr;
pthread_mutexattr_init(&err_chk_attr);
pthread_mutexattr_settype(&err_chk_attr,
  PTHREAD_MUTEX_ERRORCHECK);

pthread_mutex_t mut1;
pthread_mutex_init(&mut1, &err_chk_attr);

pthread_mutex_lock(&mut1);

if (pthread_mutex_lock(&mut1) == EDEADLK)
 fprintf(stderr, "error caught at runtime\n");

if (pthread_mutex_unlock(&mut2) == EPERM)
 fprintf(stderr, "another error: you didn’t lock it!\n");



In the producer-consumer problem we have two classes of threads, producers and 
consumers, and a buffer containing a fixed number of slots. A producer thread attempts 
to put something into the next empty buffer slot, a consumer thread attempts to take 
something out of the next occupied buffer slot. The synchronization conditions are that 
producers cannot proceed unless there are empty slots and consumers cannot proceed 
unless there are occupied slots.

This is a classic, but frequently occurring synchronization problem. For example, the 
heart of the implementation of UNIX pipes is an instance of this problem.
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Producer-Consumer Problem

ProducerConsumer



Illustrated in the slide is a simple pseudocode construct, the guarded command, that 
we use to describe how various synchronization operations work. The idea is that the 
code within the square brackets is executed only when the guard (which could be some 
arbitrary boolean expression) evaluates to true. Furthermore, this code within the 
square brackets is executed atomically, i.e., the effect is that nothing else happens in 
the program while the code is executed. Note that the code is not necessarily executed 
as soon as the guard evaluates to true: we are assured only that when execution of the 
code begins, the guard is true.

Keep in mind that this is strictly pseudocode: it’s not part of POSIX threads and is not 
necessarily even implementable (at least not for the general case).
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Guarded Commands

when (guard) [ 
 /*

    once the guard is true, execute this
    code atomically
   */

 ...

]



Another synchronization construct is the semaphore, designed by Edsger Dijkstra in the 
1960s. A semaphore behaves as if it were a nonnegative integer, but it can be operated 
on only by the semaphore operations. Dijkstra defined two of these: P (for prolagen, a 
made-up word derived from proberen te verlagen, which means “try to decrease” in 
Dutch) and V (for verhogen, “increase” in Dutch). Their semantics are shown in the 
slide.

We think of operations on semaphores as being a special case of guarded commands — 
a special case that occurs frequently enough to warrant a highly optimized 
implementation.
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Semaphores

• P(S) operation:
when (S > 0) [
  S = S – 1;
]

• V(S) operation:
[S = S + 1;]
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Quiz 1

semaphore S = 1;
int count = 0;

void func( ) {
  P(S);
  count++;
  ...

  count--;
  V(S);
}

The function func is 
called concurrently by n 
threads. What’s the 
maximum value that 
count will take on?

a) indeterminate
b) 1
c) 2
d) n

• P(S) operation:
when (S > 0) [
  S = S – 1;
]

• V(S) operation:
[S = S + 1;]



Here’s a solution for the producer/consumer problem using semaphores — note that it 
works only with a single producer and a single consumer, and only one item at a time is 
produced or consumed, though it can be generalized to work with multiple producers 
and consumers.
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Producer/Consumer with 
Semaphores

Semaphore empty = BSIZE;
Semaphore occupied = 0;
int nextin = 0;
int nextout = 0;

void Produce(char item) {
  P(empty);
  buf[nextin] = item;
  if (++nextin >= BSIZE)
    nextin = 0;
  V(occupied);
}

char Consume( ) {
  char item;
  P(occupied);
  item = buf[nextout];
  if (++nextout >= BSIZE)
    nextout = 0;
  V(empty);
  return item;
}



Here is the POSIX interface for operations on semaphores. (These operation names are 
not typos — the “pthread_” prefix really is not used here, since the semaphore 
operations come from a different POSIX specification — 1003.1b. Note also the need for 
the header file, semaphore.h) When creating a semaphore (sem_init), rather than 
supplying an attributes structure, one supplies a single integer argument, pshared, 
which indicates whether the semaphore is to be used only by threads of one process 
(pshared = 0) or by multiple processes (pshared = 1). The third argument to sem_init is 
the semaphore’s initial value.

All the semaphore operations return zero if successful; otherwise, they return an error 
code. The function sem_trywait is similar to sem_wait (and to the P operation) except 
that if the semaphore’s value cannot be decremented immediately, then rather than 
wait, it returns -1 and sets errno to EAGAIN.
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POSIX Semaphores

#include <semaphore.h>

int sem_init(sem_t *semaphore, int pshared, int init);
int sem_destroy(sem_t *semaphore);
int sem_wait(sem_t *semaphore); 
    /* P operation */

int sem_trywait(sem_t *semaphore);
    /* conditional P operation */
int sem_post(sem_t *semaphore);
    /* V operation */



Here is the producer-consumer solution implemented with POSIX semaphores.
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Producer-Consumer with POSIX 
Semaphores

void produce(char item) {

 sem_wait(&empty);
 buf[nextin] = item;
 if (++nextin >= BSIZE)
  nextin = 0;
 sem_post(&occupied);
}

char consume( ) {
 char item;
 sem_wait(&occupied);
 item = buf[nextout];
 if (++nextout >= BSIZE)
  nextout = 0;
 sem_post(&empty);
 return item;
}

sem_init(&empty, 0, BSIZE);
sem_init(&occupied, 0, 0);
int nextin = 0;
int nextout = 0;
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Quiz 2

Does the POSIX version of the producer-
consumer solution work with multiple 
producers and consumers?

a) It can’t easily be made to work
b) Yes
c) No, but it can be made to work by using 

mutexes to make sure that only one thread 
is executing the producer code at a time and 
only one thread is executing the consumer 
code at a time



We’d like to design a “start-stop” interface. A thread calling wait_for_start waits for the 
start button to be pressed. Once it’s been pressed, those waiting will be released and 
subsequent threads calling wait_for_start will return immediately. However, once the 
stop button is pressed, then all threads calling wait_for_start will wait until the start 
button is pressed again.
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Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s);

void start(state_t *s);

void stop(state_t *s);



Here’s a possible implementation. Callers of sleep don’t return from sleep until 
wakeup_all has been called.

However, calls to wakeup_all merely wakeup all who are currently in sleep. They have 
no effect on subsequent calls to sleep. Thus, there could be a problem in the above code 
if a thread calls start while another thread has just checked the state in wait_for_start, 
but hasn’t yet called sleep.
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Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s){
  if (s->state == stopped)
    sleep();

}
void start(state_t *s) {
  state = started;
  wakeup_all();
}

void stop(state_t *s) {
  state = stopped;
}



Here’s one attempt to fix the problem of the previous slide using mutexes. It clearly 
doesn’t help – the thread calling start might get the mutex and call wakeup_all just 
before the other thread calls sleep.
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Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  if (s->state == stopped) {
    pthread_mutex_unlock(&s->mutex);
    sleep();
  else pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  state = started;
  wakeup_all();
  pthread_mutex_unlock(&s->mutex);
}



This code is perhaps worse, the thread waits in sleep with the mutex locked, preventing 
any thread from calling wakeup_all.
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Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  if (s->state == stopped) {
    sleep();
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  state = started;
  wakeup_all();
  pthread_mutex_unlock(&s->mutex);
}



This code actually works; it uses a POSIX threads construct known as the condition 
variable. The thread in wait_for_start first locks the mutex, then checks the state. If it’s 
stopped, it calls pthread_cond_wait, which, all at once, put the calling thread to sleep, 
enqueues it on the queue (known as a condition variable, and unlocks the mutex.

A thread calling start can’t proceed until it has locked the mutex, thus ensuring that no 
thread is in the midst of checking the state and then calling pthread_cond_wait in 
wait_for_start. Once the thread calling start has the mutex, it sets state to started and 
calls pthread_broadcast, waking up all threads who are waiting on the queue (the 
condition variable). It then unlocks the mutex.

The thread that was waiting within pthread_cond_wait is woken up, but it doesn’t 
return from the call to pthread_cond_wait until it locks the mutex. Thus, it enters 
pthread_cond_wait with the mutex locked and exits it with the mutex_locked. While its 
inside pthread_cond_wait, it does not have the lock on the mutex (though some other 
thread might).

Thus, this code is a correct implementation of the start/stop interface.
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Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  while(s->state == stopped)
    pthread_cond_wait(&s->queue, &s->mutex);
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}



Condition variables are another means for synchronization in POSIX; they represent 
queues of threads waiting to be woken by other threads and can be used to implement 
guarded commands, as shown in the slide. Though they are rather complicated at first 
glance, they are even more complicated when you really get into them.

A thread puts itself to sleep and joins the queue of threads associated with a condition 
variable by calling pthread_cond_wait. When it places this call, it must have some 
mutex locked, and it passes the mutex as the second argument. As part of the call, the 
mutex is unlocked and the thread is put to sleep, all in a single atomic step: i.e., 
nothing can happen that might affect the thread between the moments when the mutex 
is unlocked and when the thread goes to sleep. Threads queued on a condition variable 
are released in first-in-first-out order. They are released in response to calls to 
pthread_cond_signal (which releases the first thread in line) and 
pthread_cond_broadcast (which releases all threads). However, before a released thread 
may return from pthread_cond_wait, it first relocks the mutex. Thus, only one thread at 
a time actually returns from pthread_cond_wait. If a call to either function is made 
when no threads are queued on the condition variable, nothing happens — the fact that 
a call had been made is not remembered.

So far, though complicated, the description is rational. Now for the weird part: a thread 
may be released from the condition-variable queue at any moment, perhaps 
spontaneously, perhaps due to sun spots. Thus, it’s extremely important that, after 
pthread_cond_wait returns, that the caller check to make sure that it really should 
have returned. The reason for this weirdness is that it allows a fair amount of latitude in 
implementations. However, the Linux implementation behaves rationally, i.e., as in the 
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Condition Variables
when (guard) [
  statement 1;
  …
  statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
  pthread_cond_wait(
     &cond_var, &mutex);
statement 1;
…
statement n;
pthread_mutex_unlock(&mutex);

// code modifying the guard:
…

pthread_mutex_lock(&mutex);
// code modifying the guard:
…
pthread_cond_broadcast(
    &cond_var);
pthread_mutex_unlock(&mutex);



first two paragraphs. (But don’t depend on this behavior — it could change tomorrow!)



Setting up condition variables is done in a similar fashion as mutexes: The functions 
pthread_cond_init and pthread_cond_destroy are supplied to initialize and to destroy 
a condition variable. They may also be statically initialized by setting them to 
PTHREAD_COND_INITIALIZER in their declarations. As with mutexes and threads, 
default attributes may be specified by supplying a zero. The functions 
pthread_condattr_init and pthread_condattr_destroy control the initialization and 
destruction of their attribute structures.
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Set Up

int pthread_cond_init(pthread_cond_t *cvp,
   pthread_condattr_t *attrp)

int pthread_cond_destroy(pthread_cond_t *cvp)

int pthread_condattr_init(pthread_condattr_t *attrp)

int pthread_condattr_destroy(pthread_condattr_t *attrp)



Here we begin a producer-consumer solution using condition variables and mutexes; 
this solution, unlike the previous, allows multiple producers and consumers. We define 
a struct buffer to represent a buffer, associated synchronization variables, and other 
associated variables. In our example, producers wait for empty slots to become available, 
and consumers wait for occupied slots to become available. Waiting producers are 
queued on the condition variable more_space and waiting consumers are queued on the 
condition variable more_items.
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PC with Condition Variables (1)

typedef struct buffer {
  pthread_mutex_t m;
  pthread_cond_t  more_space;
  pthread_cond_t  more_items;
  int             next_in;
  int             next_out;
  int             empty;
  char            buf[BSIZE];
} buffer_t;



Here we have the remaining code of our solution. A producer, if there is at least one 
empty slot, fills the one at location nextin, increments nextin (taking wraparound into 
account), calls pthread_cond_signal to notify the first waiting consumer that there is 
now an occupied slot in the buffer, and releases the mutex. If there are no empty slots in 
the buffer, the producer calls pthread_cond_wait to wait for one.

As discussed previously, this call has a fairly complicated effect: it releases the mutex 
given as the second argument and puts its caller to sleep, after queuing it on the 
condition variable given as the first argument. At some point in the future, a consumer 
should call pthread_cond_signal, with more_space as the argument.

Note that we’ve used pthread_cond_signal rather than pthread_cond_broadcast. We 
can do this here since, if, for example, n threads are waiting within the call to 
pthread_cond_wait in the producer, then there must be n calls to consume to release 
them all. If we’d used pthread_cond_broadcast instead, the solution would still work, 
but would probably be less efficient, since in many cases waiting threads would return 
from pthread_cond_wait, discover that the guard is still false, and have to call 
pthread_cond_wait again.

If our producer is the first in the queue associated with more_space, it is released from 
the queue, but it does not yet return from pthread_cond_wait. Instead, it continues 
execution inside that routine, where it effectively makes a call to pthread_mutex_lock to 
reacquire the mutex it had when it entered pthread_cond_wait in the first place. Once it 
obtains the mutex, it then returns from pthread_cond_wait. Note that when the thread 
attempts to reacquire the mutex, other threads might be waiting for the mutex at the 
entrance of the producer code. One of these other threads might obtain the mutex first 
— thus there is no guarantee that callers of produce are served in FIFO order.

The order in which threads are released from a condition variable’s queue is first-in-first-
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PC with Condition Variables (2)
void produce(buffer_t *b,
    char item) {

 pthread_mutex_lock(&b->m);
 while (!(b->empty > 0))
  pthread_cond_wait(
    &b->more_space, &b->m);
 b->buf[b->nextin] = item;
 if (++(b->nextin) == BSIZE)
   b->nextin = 0;
 b->empty--;
 pthread_cond_signal(
   &b->more_items);
 pthread_mutex_unlock(&b->m);
}

char consume(buffer_t *b) {
 char item;
 pthread_mutex_lock(&b->m);
 while (!(b->empty < BSIZE))
  pthread_cond_wait(
    &b->more_items, &b->m);
 item = b->buf[b->nextout];
 if (++(b->nextout) == BSIZE)
   b->nextout = 0;
 b->empty++;
 pthread_cond_signal(
   &b->more_space);
 pthread_mutex_unlock(&b->m);
 return item;
}



out within priority levels. Thus, waiting high-priority threads are released before 
waiting low-priority threads; threads of the same priority are released in the order in 
which they called pthread_cond_wait.



III-31

Let’s look at another classic synchronization problem — the readers-writers problem. 
Here we have some sort of data structure to which any number of threads may have 
simultaneous access, as long as they are just reading. But if a thread is to write in the 
data structure, it must have exclusive access.
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Readers-Writers Problem



Here we again use guarded commands to describe our solution. 
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Pseudocode

reader( ) {

 when (writers == 0) [
  readers++;
 ]

 /* read */

 [readers--;]
}

writer( ) {

 when ((writers == 0) &&
   (readers == 0)) [
  writers++;
 ]

 /* write */

 [writers--;]
}



We’ve attached assertions to our pseudocode to help make it clearer that our code is 
correct. The use of assertions is a valuable technique (even in real code), particularly for 
multithreaded programs.

CS33 Intro to Computer Systems XXXI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pseudocode with Assertions

reader( ) {
 when (writers == 0) [
  readers++;
 ]

 assert((writers == 0) &&
   (readers > 0));
 /* read */

 [readers--;]
}

writer( ) {
 when ((writers == 0) &&
   (readers == 0)) [
  writers++;
 ]

 assert((readers == 0) &&
   (writers == 1));
 /* write */

 [writers--;]
}



Now we convert the pseudocode to real code. We use two condition variables, readersQ 
and writersQ, to represent queues of readers and writers waiting for notification that 
their respective guards are true.

The writer calls pthread_cond_signal on writersQ so that it wakes up at most one 
writer, but calls pthread_cond_broadcast on readersQ to wake up all the readers.
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Solution with POSIX Threads
reader( ) {
  pthread_mutex_lock(&m);
  while (!(writers == 0))
    pthread_cond_wait(
        &readersQ, &m);
  readers++;
  pthread_mutex_unlock(&m);
  /* read */
  pthread_mutex_lock(&m);
  if (--readers == 0)
    pthread_cond_signal(
        &writersQ);
  pthread_mutex_unlock(&m);
}

writer( ) {
 pthread_mutex_lock(&m);
 while(!((readers == 0) &&
    (writers == 0)))
  pthread_cond_wait(
    &writersQ, &m);
 writers++;
 pthread_mutex_unlock(&m);
 /* write */
 pthread_mutex_lock(&m);
 writers--;
 pthread_cond_signal(
      &writersQ);
 pthread_cond_broadcast(
   &readersQ);
 pthread_mutex_unlock(&m);
}



Well behaved threads always unlock the locks they lock.
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Quiz 3

If a thread calls writer, will it eventually return 
from writer (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will 

not return
c) it might return, but it’s highly likely that it will 

never return
d) no, never


