
CS33 Intro to Computer Systems XXXI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming II

Let’s try a similar approach for the fine-grained approach.

However, we can see an immediate problem: the thread executing this code will not only
modify *fbp, but also its predecessor and successor blocks in the freelist.

CS33 Intro to Computer Systems XXXI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (1)

void pull_from_freelist(fblock_t *fbp) {
 pthread_mutex_lock(&fpp->mutex);
 ...
 fbp->blink->flink = fbp->flink;
 fbp->flink->blink = fbp->blink;
 ...

 pthread_mutex_unlock(&fpp->mutex);
}

So, we add code to lock and unlock the mutexes of the adjacent blocks.

CS33 Intro to Computer Systems XXXI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (2)

void pull_from_freelist(fblock_t *fbp) {
 pthread_mutex_lock(&fpp->mutex);
 ...
 pthread_mutex_lock(&fpp->blink->mutex);
 fbp->blink->flink = fbp->flink;
 pthread_mutex_lock(&fpp->flink->mutex);

 fbp->flink->blink = fbp->blink;
 ...
 pthread_mutex_unlock(&fpp->blink->mutex);
 pthread_mutex_unlock(&fpp->flink->mutex);
 pthread_mutex_unlock(&fpp->mutex);

}

Pictorially, our thread first locks the mutex on *fbp (the middle block), then its
predecessor and then its successor.

CS33 Intro to Computer Systems XXXI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

But suppose other threads are calling pull_from_freelist at the same time. Let’s say that
thread 1 is pulling the middle block, thread 2 is pulling the upper block, and thread 3 is
pulling the lower block.

All three threads have locked the mutex on the block they’re pulling. Thread one tries to
lock the mutex on the upper block (once it successfully locks it, then it will try to lock
the mutex on the lower block). However, thread 2 has already locked the mutex on the
upper block, and won’t unlock it until after it locks the mutex on the middle block. But
thread 1 won’t unlock it until it locks the mutex on the upper block (not to mention the
lower block).

So, we’re stuck. threads 1 and 2 (as well as 3) won’t ever be able to lock all the mutexes
they need, and, because of this, can’t make any further progress. This phenomenon is
called deadlock.

CS33 Intro to Computer Systems XXXI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

In this example our threads are using two mutexes to control access to two different
objects. Thread 1, executing func1, first takes mutex 1, then, while still holding mutex
1, obtains mutex 2. Thread 2, executing func2, first takes mutex 2, then, while still
holding mutex 2, obtains mutex 1. However, things do not always work out as planned.
If thread 1 obtains mutex 1 and, at about the same time, thread 2 obtains mutex 2, then
if thread 1 attempts to take mutex 2 and thread 2 attempts to take mutex 1, we have a
deadlock.

CS33 Intro to Computer Systems XXXI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Taking Multiple Locks

func1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

func2() {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

Deadlock results when there are circularities in dependencies. In the slide, mutex 1 is
held by thread a, which is waiting to take mutex 2. However, thread b is holding mutex
2, waiting to take mutex 1. If we can make certain that such circularities never happen,
there can’t possibly be deadlock.

CS33 Intro to Computer Systems XXXI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Preventing Deadlock

mutex
2

mutex
1

thread
a

thread
b

If all threads take locks in the same order, deadlock cannot happen.

How can we modify our pull_from_freelist code to use this approach (of all threads
taking locks in the same order)?

CS33 Intro to Computer Systems XXXI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Taking Multiple Locks, Safely

proc1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

The problem we’ve been looking at is a special case of what’s known as the “dining philosophers
problem”, posed by Edsger Dijkstra in EWD310, first published as Hierarchical Ordering of
Sequential Processes in Operating Systems Techniques, C.A.R. Hoare and R.H. Perrot, Eds.,
Academic Press, New York, 1972. The idea is that we have five philosophers sitting around a table.
At the center of the table is a plate of spaghetti. Between each pair of philosophers is a single
chopstick (Dijkstra’s original formulation used forks, but chopsticks make more sense). The
algorithm of a philosopher is:

while (1) {

 think();

 when available

 grab chopstick from one side();

 when available

 grab chopstick from the other side();

 eat some spaghetti();

 put chopsticks down();

}

How long each operation takes varies. Which chopstick is grabbed first is not specified, but if each
philosopher grabs their right chopstick first, they may starve to death. There are many subtle
issues involved in its solution. (It has many, none of which are as interesting as the problem itself.)

Philosophers clockwise from top: Laozi, Swami Vivekananda, Aristotle, Mary Wollstonecraft, Zara
Yacob.

CS33 Intro to Computer Systems XXXI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dining Philosophers Problem

CS33 Intro to Computer Systems XXXI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Practical Issues with Mutexes

• Used a lot in multithreaded programs
– speed is really important

» shouldn’t slow things down much in the success
case

– checking for errors slows things down (a lot)
» thus errors aren’t checked by default

The functions pthread_mutex_init and pthread_mutex_destroy are supplied to
initialize and to destroy a mutex. (They do not allocate or free the storage for the mutex
data structure, but in some implementations they might allocate and free storage
referred to by the mutex data structure.) As with threads, an attribute structure
encapsulates the various parameters that might apply to the mutex. The functions
pthread_mutexattr_init and pthread_mutexattr_destroy control the initialization and
destruction of these attribute structures, as we see a few slides from now. For most
purposes, the default attributes are fine and a NULL attrp can be provided to the
pthread_mutex_init routine.

Note that, as we’ve already seen, a mutex that’s allocated statically may be initialized
with PTHREAD_MUTEX_INITIALIZER.

CS33 Intro to Computer Systems XXXI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread_mutex_init(pthread_mutex_t *mutexp,
 pthread_mutexattr_t *attrp)

int pthread_mutex_destroy(pthread_mutex_t *mutexp)

int pthread_mutexattr_init(pthread_mutexattr_t *attrp)

int pthread_mutexattr_destroy(pthread_mutexattr_t *attrp)

In the example at the top of the slide, we have mistyped the name of the mutex in the
second call to pthread_mutex_lock. The result will be that when pthread_mutex_lock
is called for the second time, there will be immediate deadlock, since the caller is
attempting to lock a mutex that is already locked, but the only thread who can unlock
that mutex is the caller.

In the example at the bottom of the slide, we have again mistyped the name of a mutex,
but this time for a pthread_mutex_unlock call. If m2 is not currently locked by some
thread, unlocking will have unpredictable results, possibly fatal. If m2 is locked by some
thread, again there will be unpredictable results, since a mutex that was thought to be
locked (and protecting some data structure) is now unlocked. When the thread who
locked it attempts to unlock it, the result will be even further unpredictability.

CS33 Intro to Computer Systems XXXI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Stupid (i.e., Common) Mistakes ...

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m1);
 // really meant to lock m2 ...

pthread_mutex_lock(&m1);
 ...
pthread_mutex_unlock(&m2);
 // really meant to unlock m1 ...

Checking for some sorts of mutex-related errors is relatively easy to do at runtime
(though checking for all possible forms of deadlock is prohibitively expensive). However,
since mutexes are used so frequently, even a little bit of extra overhead for runtime error
checking is often thought to be too much. Thus, if done at all, runtime error checking is
an optional feature. One “turns on” the feature for a particular mutex by initializing it to
be of type “ERRORCHECK,” as shown in the slide. For mutexes initialized in this way,
pthread_mutex_lock checks to make certain that it is not attempting to lock a mutex
that is already locked by the calling thread; pthread_mutex_unlock checks to make
certain that the mutex being unlocked is currently locked by the calling thread.

Note that mutexes with the error-check attribute are more expensive than normal
mutexes, since they must keep track of which thread, if any, has the mutex locked. (For
normal mutexes, just a single bit must be maintained for the state of the mutex, which
is either locked or unlocked.)

CS33 Intro to Computer Systems XXXI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Runtime Error Checking

pthread_mutexattr_t err_chk_attr;
pthread_mutexattr_init(&err_chk_attr);
pthread_mutexattr_settype(&err_chk_attr,
 PTHREAD_MUTEX_ERRORCHECK);

pthread_mutex_t mut1;
pthread_mutex_init(&mut1, &err_chk_attr);

pthread_mutex_lock(&mut1);

if (pthread_mutex_lock(&mut1) == EDEADLK)
 fprintf(stderr, "error caught at runtime\n");

if (pthread_mutex_unlock(&mut2) == EPERM)
 fprintf(stderr, "another error: you didn’t lock it!\n");

In the producer-consumer problem we have two classes of threads, producers and
consumers, and a buffer containing a fixed number of slots. A producer thread attempts
to put something into the next empty buffer slot, a consumer thread attempts to take
something out of the next occupied buffer slot. The synchronization conditions are that
producers cannot proceed unless there are empty slots and consumers cannot proceed
unless there are occupied slots.

This is a classic, but frequently occurring synchronization problem. For example, the
heart of the implementation of UNIX pipes is an instance of this problem.

CS33 Intro to Computer Systems XXXI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Producer-Consumer Problem

ProducerConsumer

Illustrated in the slide is a simple pseudocode construct, the guarded command, that
we use to describe how various synchronization operations work. The idea is that the
code within the square brackets is executed only when the guard (which could be some
arbitrary boolean expression) evaluates to true. Furthermore, this code within the
square brackets is executed atomically, i.e., the effect is that nothing else happens in
the program while the code is executed. Note that the code is not necessarily executed
as soon as the guard evaluates to true: we are assured only that when execution of the
code begins, the guard is true.

Keep in mind that this is strictly pseudocode: it’s not part of POSIX threads and is not
necessarily even implementable (at least not for the general case).

CS33 Intro to Computer Systems XXXI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Guarded Commands

when (guard) [
 /*

 once the guard is true, execute this
 code atomically
 */

 ...

]

Another synchronization construct is the semaphore, designed by Edsger Dijkstra in the
1960s. A semaphore behaves as if it were a nonnegative integer, but it can be operated
on only by the semaphore operations. Dijkstra defined two of these: P (for prolagen, a
made-up word derived from proberen te verlagen, which means “try to decrease” in
Dutch) and V (for verhogen, “increase” in Dutch). Their semantics are shown in the
slide.

We think of operations on semaphores as being a special case of guarded commands —
a special case that occurs frequently enough to warrant a highly optimized
implementation.

CS33 Intro to Computer Systems XXXI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Semaphores

• P(S) operation:
when (S > 0) [
 S = S – 1;
]

• V(S) operation:
[S = S + 1;]

CS33 Intro to Computer Systems XXXI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

semaphore S = 1;
int count = 0;

void func() {
 P(S);
 count++;
 ...

 count--;
 V(S);
}

The function func is
called concurrently by n
threads. What’s the
maximum value that
count will take on?

a) indeterminate
b) 1
c) 2
d) n

• P(S) operation:
when (S > 0) [
 S = S – 1;
]

• V(S) operation:
[S = S + 1;]

Here’s a solution for the producer/consumer problem using semaphores — note that it
works only with a single producer and a single consumer, and only one item at a time is
produced or consumed, though it can be generalized to work with multiple producers
and consumers.

CS33 Intro to Computer Systems XXXI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Producer/Consumer with
Semaphores

Semaphore empty = BSIZE;
Semaphore occupied = 0;
int nextin = 0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 if (++nextin >= BSIZE)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 if (++nextout >= BSIZE)
 nextout = 0;
 V(empty);
 return item;
}

Here is the POSIX interface for operations on semaphores. (These operation names are
not typos — the “pthread_” prefix really is not used here, since the semaphore
operations come from a different POSIX specification — 1003.1b. Note also the need for
the header file, semaphore.h) When creating a semaphore (sem_init), rather than
supplying an attributes structure, one supplies a single integer argument, pshared,
which indicates whether the semaphore is to be used only by threads of one process
(pshared = 0) or by multiple processes (pshared = 1). The third argument to sem_init is
the semaphore’s initial value.

All the semaphore operations return zero if successful; otherwise, they return an error
code. The function sem_trywait is similar to sem_wait (and to the P operation) except
that if the semaphore’s value cannot be decremented immediately, then rather than
wait, it returns -1 and sets errno to EAGAIN.

CS33 Intro to Computer Systems XXXI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

POSIX Semaphores

#include <semaphore.h>

int sem_init(sem_t *semaphore, int pshared, int init);
int sem_destroy(sem_t *semaphore);
int sem_wait(sem_t *semaphore);
 /* P operation */

int sem_trywait(sem_t *semaphore);
 /* conditional P operation */
int sem_post(sem_t *semaphore);
 /* V operation */

Here is the producer-consumer solution implemented with POSIX semaphores.

CS33 Intro to Computer Systems XXXI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Producer-Consumer with POSIX
Semaphores

void produce(char item) {

 sem_wait(&empty);
 buf[nextin] = item;
 if (++nextin >= BSIZE)
 nextin = 0;
 sem_post(&occupied);
}

char consume() {
 char item;
 sem_wait(&occupied);
 item = buf[nextout];
 if (++nextout >= BSIZE)
 nextout = 0;
 sem_post(&empty);
 return item;
}

sem_init(&empty, 0, BSIZE);
sem_init(&occupied, 0, 0);
int nextin = 0;
int nextout = 0;

CS33 Intro to Computer Systems XXXI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

Does the POSIX version of the producer-
consumer solution work with multiple
producers and consumers?

a) It can’t easily be made to work
b) Yes
c) No, but it can be made to work by using

mutexes to make sure that only one thread
is executing the producer code at a time and
only one thread is executing the consumer
code at a time

We’d like to design a “start-stop” interface. A thread calling wait_for_start waits for the
start button to be pressed. Once it’s been pressed, those waiting will be released and
subsequent threads calling wait_for_start will return immediately. However, once the
stop button is pressed, then all threads calling wait_for_start will wait until the start
button is pressed again.

CS33 Intro to Computer Systems XXXI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s);

void start(state_t *s);

void stop(state_t *s);

Here’s a possible implementation. Callers of sleep don’t return from sleep until
wakeup_all has been called.

However, calls to wakeup_all merely wakeup all who are currently in sleep. They have
no effect on subsequent calls to sleep. Thus, there could be a problem in the above code
if a thread calls start while another thread has just checked the state in wait_for_start,
but hasn’t yet called sleep.

CS33 Intro to Computer Systems XXXI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s){
 if (s->state == stopped)
 sleep();

}
void start(state_t *s) {
 state = started;
 wakeup_all();
}

void stop(state_t *s) {
 state = stopped;
}

Here’s one attempt to fix the problem of the previous slide using mutexes. It clearly
doesn’t help – the thread calling start might get the mutex and call wakeup_all just
before the other thread calls sleep.

CS33 Intro to Computer Systems XXXI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 if (s->state == stopped) {
 pthread_mutex_unlock(&s->mutex);
 sleep();
 else pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 state = started;
 wakeup_all();
 pthread_mutex_unlock(&s->mutex);
}

This code is perhaps worse, the thread waits in sleep with the mutex locked, preventing
any thread from calling wakeup_all.

CS33 Intro to Computer Systems XXXI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 if (s->state == stopped) {
 sleep();
 pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 state = started;
 wakeup_all();
 pthread_mutex_unlock(&s->mutex);
}

This code actually works; it uses a POSIX threads construct known as the condition
variable. The thread in wait_for_start first locks the mutex, then checks the state. If it’s
stopped, it calls pthread_cond_wait, which, all at once, put the calling thread to sleep,
enqueues it on the queue (known as a condition variable, and unlocks the mutex.

A thread calling start can’t proceed until it has locked the mutex, thus ensuring that no
thread is in the midst of checking the state and then calling pthread_cond_wait in
wait_for_start. Once the thread calling start has the mutex, it sets state to started and
calls pthread_broadcast, waking up all threads who are waiting on the queue (the
condition variable). It then unlocks the mutex.

The thread that was waiting within pthread_cond_wait is woken up, but it doesn’t
return from the call to pthread_cond_wait until it locks the mutex. Thus, it enters
pthread_cond_wait with the mutex locked and exits it with the mutex_locked. While its
inside pthread_cond_wait, it does not have the lock on the mutex (though some other
thread might).

Thus, this code is a correct implementation of the start/stop interface.

CS33 Intro to Computer Systems XXXI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 while(s->state == stopped)
 pthread_cond_wait(&s->queue, &s->mutex);
 pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 s->state = started;
 pthread_cond_broadcast(&s->queue);
 pthread_mutex_unlock(&s->mutex);
}

Condition variables are another means for synchronization in POSIX; they represent
queues of threads waiting to be woken by other threads and can be used to implement
guarded commands, as shown in the slide. Though they are rather complicated at first
glance, they are even more complicated when you really get into them.

A thread puts itself to sleep and joins the queue of threads associated with a condition
variable by calling pthread_cond_wait. When it places this call, it must have some
mutex locked, and it passes the mutex as the second argument. As part of the call, the
mutex is unlocked and the thread is put to sleep, all in a single atomic step: i.e.,
nothing can happen that might affect the thread between the moments when the mutex
is unlocked and when the thread goes to sleep. Threads queued on a condition variable
are released in first-in-first-out order. They are released in response to calls to
pthread_cond_signal (which releases the first thread in line) and
pthread_cond_broadcast (which releases all threads). However, before a released thread
may return from pthread_cond_wait, it first relocks the mutex. Thus, only one thread at
a time actually returns from pthread_cond_wait. If a call to either function is made
when no threads are queued on the condition variable, nothing happens — the fact that
a call had been made is not remembered.

So far, though complicated, the description is rational. Now for the weird part: a thread
may be released from the condition-variable queue at any moment, perhaps
spontaneously, perhaps due to sun spots. Thus, it’s extremely important that, after
pthread_cond_wait returns, that the caller check to make sure that it really should
have returned. The reason for this weirdness is that it allows a fair amount of latitude in
implementations. However, the Linux implementation behaves rationally, i.e., as in the

CS33 Intro to Computer Systems XXXI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Condition Variables
when (guard) [
 statement 1;
 …
 statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
 pthread_cond_wait(
 &cond_var, &mutex);
statement 1;
…
statement n;
pthread_mutex_unlock(&mutex);

// code modifying the guard:
…

pthread_mutex_lock(&mutex);
// code modifying the guard:
…
pthread_cond_broadcast(
 &cond_var);
pthread_mutex_unlock(&mutex);

first two paragraphs. (But don’t depend on this behavior — it could change tomorrow!)

Setting up condition variables is done in a similar fashion as mutexes: The functions
pthread_cond_init and pthread_cond_destroy are supplied to initialize and to destroy
a condition variable. They may also be statically initialized by setting them to
PTHREAD_COND_INITIALIZER in their declarations. As with mutexes and threads,
default attributes may be specified by supplying a zero. The functions
pthread_condattr_init and pthread_condattr_destroy control the initialization and
destruction of their attribute structures.

CS33 Intro to Computer Systems XXXI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread_cond_init(pthread_cond_t *cvp,
 pthread_condattr_t *attrp)

int pthread_cond_destroy(pthread_cond_t *cvp)

int pthread_condattr_init(pthread_condattr_t *attrp)

int pthread_condattr_destroy(pthread_condattr_t *attrp)

Here we begin a producer-consumer solution using condition variables and mutexes;
this solution, unlike the previous, allows multiple producers and consumers. We define
a struct buffer to represent a buffer, associated synchronization variables, and other
associated variables. In our example, producers wait for empty slots to become available,
and consumers wait for occupied slots to become available. Waiting producers are
queued on the condition variable more_space and waiting consumers are queued on the
condition variable more_items.

CS33 Intro to Computer Systems XXXI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (1)

typedef struct buffer {
 pthread_mutex_t m;
 pthread_cond_t more_space;
 pthread_cond_t more_items;
 int next_in;
 int next_out;
 int empty;
 char buf[BSIZE];
} buffer_t;

Here we have the remaining code of our solution. A producer, if there is at least one
empty slot, fills the one at location nextin, increments nextin (taking wraparound into
account), calls pthread_cond_signal to notify the first waiting consumer that there is
now an occupied slot in the buffer, and releases the mutex. If there are no empty slots in
the buffer, the producer calls pthread_cond_wait to wait for one.

As discussed previously, this call has a fairly complicated effect: it releases the mutex
given as the second argument and puts its caller to sleep, after queuing it on the
condition variable given as the first argument. At some point in the future, a consumer
should call pthread_cond_signal, with more_space as the argument.

Note that we’ve used pthread_cond_signal rather than pthread_cond_broadcast. We
can do this here since, if, for example, n threads are waiting within the call to
pthread_cond_wait in the producer, then there must be n calls to consume to release
them all. If we’d used pthread_cond_broadcast instead, the solution would still work,
but would probably be less efficient, since in many cases waiting threads would return
from pthread_cond_wait, discover that the guard is still false, and have to call
pthread_cond_wait again.

If our producer is the first in the queue associated with more_space, it is released from
the queue, but it does not yet return from pthread_cond_wait. Instead, it continues
execution inside that routine, where it effectively makes a call to pthread_mutex_lock to
reacquire the mutex it had when it entered pthread_cond_wait in the first place. Once it
obtains the mutex, it then returns from pthread_cond_wait. Note that when the thread
attempts to reacquire the mutex, other threads might be waiting for the mutex at the
entrance of the producer code. One of these other threads might obtain the mutex first
— thus there is no guarantee that callers of produce are served in FIFO order.

The order in which threads are released from a condition variable’s queue is first-in-first-

CS33 Intro to Computer Systems XXXI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (2)
void produce(buffer_t *b,
 char item) {

 pthread_mutex_lock(&b->m);
 while (!(b->empty > 0))
 pthread_cond_wait(
 &b->more_space, &b->m);
 b->buf[b->nextin] = item;
 if (++(b->nextin) == BSIZE)
 b->nextin = 0;
 b->empty--;
 pthread_cond_signal(
 &b->more_items);
 pthread_mutex_unlock(&b->m);
}

char consume(buffer_t *b) {
 char item;
 pthread_mutex_lock(&b->m);
 while (!(b->empty < BSIZE))
 pthread_cond_wait(
 &b->more_items, &b->m);
 item = b->buf[b->nextout];
 if (++(b->nextout) == BSIZE)
 b->nextout = 0;
 b->empty++;
 pthread_cond_signal(
 &b->more_space);
 pthread_mutex_unlock(&b->m);
 return item;
}

out within priority levels. Thus, waiting high-priority threads are released before
waiting low-priority threads; threads of the same priority are released in the order in
which they called pthread_cond_wait.

III-31

Let’s look at another classic synchronization problem — the readers-writers problem.
Here we have some sort of data structure to which any number of threads may have
simultaneous access, as long as they are just reading. But if a thread is to write in the
data structure, it must have exclusive access.

CS33 Intro to Computer Systems XXXI–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Readers-Writers Problem

Here we again use guarded commands to describe our solution.

CS33 Intro to Computer Systems XXXI–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pseudocode

reader() {

 when (writers == 0) [
 readers++;
]

 /* read */

 [readers--;]
}

writer() {

 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]

 /* write */

 [writers--;]
}

We’ve attached assertions to our pseudocode to help make it clearer that our code is
correct. The use of assertions is a valuable technique (even in real code), particularly for
multithreaded programs.

CS33 Intro to Computer Systems XXXI–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pseudocode with Assertions

reader() {
 when (writers == 0) [
 readers++;
]

 assert((writers == 0) &&
 (readers > 0));
 /* read */

 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]

 assert((readers == 0) &&
 (writers == 1));
 /* write */

 [writers--;]
}

Now we convert the pseudocode to real code. We use two condition variables, readersQ
and writersQ, to represent queues of readers and writers waiting for notification that
their respective guards are true.

The writer calls pthread_cond_signal on writersQ so that it wakes up at most one
writer, but calls pthread_cond_broadcast on readersQ to wake up all the readers.

CS33 Intro to Computer Systems XXXI–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution with POSIX Threads
reader() {
 pthread_mutex_lock(&m);
 while (!(writers == 0))
 pthread_cond_wait(
 &readersQ, &m);
 readers++;
 pthread_mutex_unlock(&m);
 /* read */
 pthread_mutex_lock(&m);
 if (--readers == 0)
 pthread_cond_signal(
 &writersQ);
 pthread_mutex_unlock(&m);
}

writer() {
 pthread_mutex_lock(&m);
 while(!((readers == 0) &&
 (writers == 0)))
 pthread_cond_wait(
 &writersQ, &m);
 writers++;
 pthread_mutex_unlock(&m);
 /* write */
 pthread_mutex_lock(&m);
 writers--;
 pthread_cond_signal(
 &writersQ);
 pthread_cond_broadcast(
 &readersQ);
 pthread_mutex_unlock(&m);
}

Well behaved threads always unlock the locks they lock.

CS33 Intro to Computer Systems XXXI–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

If a thread calls writer, will it eventually return
from writer (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will

not return
c) it might return, but it’s highly likely that it will

never return
d) no, never

