
CS33 Intro to Computer Systems XXXIV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming IV



In a number of situations one thread must tell another to cease whatever it is doing. For 
example, suppose we’ve implemented a chess-playing program by having multiple 
threads search the solution space for the next move. If one thread has discovered a quick 
way of achieving a checkmate, it would want to notify the others that they should stop 
what they’re doing, the game has been won.

One might think that this is an ideal use for per-thread signals, but there’s a cleaner 
mechanism for doing this sort of thing in POSIX threads, called cancellation.

CS33 Intro to Computer Systems XXXIV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cancellation



In the database project, you are to write a multithreaded database server. It will have 
multiple concurrent clients; each client is handled by a separate thread. As we’ve 
already discussed, the database will be implemented using a binary search tree. We’d 
like to be able to terminate clients, perhaps all of them, without doing any damage to the 
database.

CS33 Intro to Computer Systems XXXIV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multithreaded Database Server

Database

Requests



This code is invoked by a thread (as its first function). The thread reads values from 
stdin, which it then puts into a singly linked list that it allocates on the fly, and returns 
a pointer to the list.

Suppose our thread is forced to terminate in the midst of its execution (some other 
thread invokes the operation pthread_cancel on it). What sort of problems might ensue?

CS33 Intro to Computer Systems XXXIV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sample Code

void *thread_code(void *arg) {
  node_t *head = 0;
  while (1) {
    node_t *nodep;
    nodep = (node_t *)malloc(sizeof(node_t));
    nodep->next = head;
    head = nodep;    
    if (read(0, &node->value,
        sizeof(node->value)) == 0) {
      free(nodep);
      break;
    }
  }
  return head;
}

pthread_cancel(thread);



CS33 Intro to Computer Systems XXXIV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1
1   void *thread_code(void *arg) {
2     node_t *head = 0;
3     while (1) {
4       node_t *nodep;
5       nodep = (node_t *)malloc(sizeof(node_t));
6       nodep->next = head;
7       head = nodep;    
8       if (read(0, &node->value,
            sizeof(node->value)) == 0) {
9         free(nodep);
10        break;
11      }
12    }
13    return head;
14  }

Where is it safe to 
terminate a thread within 
thread_code?

a) At no lines
b) At all lines
c) At all lines other than 5 

and 9
d) At all lines other than 8
e) At all lines other than 5, 

8, and 9 



We have two concerns about the forced termination of threads resulting from 
cancellation: a thread might be in the middle of doing something important that it must 
complete before self-destructing; and a canceled thread must be given the opportunity to 
clean up.

CS33 Intro to Computer Systems XXXIV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up



A thread issues a cancel request by calling pthread_cancel, supplying the ID of the 
target thread as the argument. Associated with each thread is some state information 
known as its cancellation state and its cancellation type. When a thread receives a 
cancel request, it is marked indicating that it has a pending cancel. The next issue is 
when the thread should notice and act upon the cancel. This is governed by the 
cancellation state: whether cancels are enabled or disabled and by the cancellation 
type: whether the response to cancels is asynchronous or deferred. If cancels are 
disabled, then the cancel remains pending but is otherwise ignored until cancels are 
enabled. If cancels are enabled, they are acted on as soon as they are noticed if the 
cancellation type is asynchronous. Otherwise, i.e., if the cancellation type is deferred, 
the cancel is acted upon only when the thread reaches a cancellation point.

Cancellation points are intended to be well defined points in a thread’s execution at 
which it is prepared to be canceled. They include pretty much all system and library 
calls in which the thread can block, with the exception of pthread_mutex_lock. In 
addition, a thread may call pthread_testcancel, which has no function other than being 
a cancellation point.

The default is that cancels are enabled and deferred. One can change the cancellation 
state of a thread by using the routines shown in the slide. Calls to 
pthread_setcancelstate and pthread_setcanceltype return the previous value of the 
affected portion of the cancellability state.

CS33 Intro to Computer Systems XXXIV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(
  {PTHREAD_CANCEL_ASYNCHRONOUS,
  PTHREAD_CANCEL_DEFERRED},
  &oldtype)



The call to read is the only cancellation point in this program. Thus, if cancellation is 
deferred, the thread will act on cancels (and determine whether they’ve been set) only 
within read. If cancellation is asynchronous, then it might occur while the thread is 
within malloc or free, and cause damage to the heap, likely resulting in (at best) a 
segmentation fault.

CS33 Intro to Computer Systems XXXIV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sample Code – Cancellation Point

void *thread_code(void *arg) {
  node_t *head = 0;
  while (1) {
    node_t *nodep;
    nodep = (node_t *)malloc(sizeof(node_t));
    nodep->next = head;
    head = nodep;    
    if (read(0, &node->value,
        sizeof(node->value)) == 0) {
      free(nodep);
      break;
    }
  }
  return head;
}



When a thread acts upon a cancel, its ultimate fate has been established, but it first gets 
a chance to clean up. Associated with each thread may be a stack of cleanup handlers. 
Such handlers are pushed onto the stack via calls to pthread_cleanup_push and 
popped off the stack via calls to pthread_cleanup_pop. Thus, when a thread acts on a 
cancel or when it calls pthread_exit, it calls each of the cleanup handlers in turn, giving 
the argument that was supplied as the second parameter of pthread_cleanup_push. 
Once all the cleanup handlers have been called, the thread terminates.

The two functions pthread_cleanup_push and pthread_cleanup_pop are intended to 
act as left and right parentheses, and thus should always be paired (in fact, they may 
actually be implemented as macros: the former contains an unmatched “{“, the latter an 
unmatched “}”). The argument to the latter function indicates whether or not the cleanup 
function should be called as a side effect of calling pthread_cleanup_pop.

CS33 Intro to Computer Systems XXXIV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cleaning Up

• void pthread_cleanup_push((void)(*routine)(void *),
 void *arg)

• void pthread_cleanup_pop(int execute)



Here we’ve added a cleanup handler to our sample code. Note that our example has just 
one cancellation point: read. The cleanup handler iterates through the list, deleting each 
element.

CS33 Intro to Computer Systems XXXIV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Sample Code, Revisited
void *thread_code(void *arg) {
  node_t *head = 0;
  pthread_cleanup_push(
      cleanup, &head);
  while (1) {
    node_t *nodep;
    nodep = (node_t *)
       malloc(sizeof(node_t));
    nodep->next = head;
    head = nodep;     
    if (read(0, &nodep->value,
        sizeof(nodep->value)) == 0) {
      free(nodep);
      break;
    }
  }
  pthread_cleanup_pop(0);
  return head;
}

void cleanup(void *arg) {
  node_t **headp = arg;
  while(*headp) {
    node_t *nodep = head->next;
    free(*headp);
    *headp = nodep;

  }
}

Quiz 2
This program will safely 
handle asynchronous 
cancels.
a) yes
b) yes, assuming thread-

safe malloc and free
c) no



Whether threads are using mutexes or readers/writers locks when manipulating a 
search tree, if we have to deal with cancellation points in the middle of such operations, 
things can get pretty complicated and error-prone. Thus, the operations to lock mutexes 
and readers/writers locks are not cancellation points. (Note, however, that for the case 
of readers/writers locks, POSIX permits waiting for readers/writers locks to be 
cancellation points, for the sake of vendors who have poor implementations of them. 
Neither Linux nor OSX implements such waiting as cancellation points.)

CS33 Intro to Computer Systems XXXIV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A More Complicated Situation …

-1

6

4 9

1 5 8 11



Here is our start/stop code again. Does it contain any cancellation points?

CS33 Intro to Computer Systems XXXIV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  while(s->state == stopped)
    pthread_cond_wait(&s->queue, &s->mutex);
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}



CS33 Intro to Computer Systems XXXIV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  while(s->state == stopped)
    pthread_cond_wait(&s->queue,
      &s->mutex);
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}

Not a Quiz

You’re in charge of 
designing POSIX threads. 
Should pthread_cond_wait 
be a cancellation point?

a) no
b) yes; cancelled 

threads must 
acquire mutex 
before invoking 
cleanup handler

c) yes; but they don’t 
acquire mutex



This example illustrates why it’s important that threads cancelled while in 
pthread_cond_wait must first lock the mutex before calling their cleanup handler. In 
this example, it’s important (for an unspecified reason) that read be called while the 
mutex is locked and should_wait is true. If the thread receives a cancel and 
cleanup_handler is called, it won’t be known whether the cancel occurred within 
pthread_cond_wait or within read. Thus cleanup_handler must perform the same 
actions in both cases. Since the thread must unlock the mutex if the cancel occurred 
while the thread was in read, it must also unlock the mutex if the cancel occurred while 
the thread was in pthread_cond_wait. Thus, it’s important that a thread cancelled while 
in pthread_cond_wait lock the mutex before it calls its cleanup handler, so that it’s 
locked when the thread enters the cleanup handler.

CS33 Intro to Computer Systems XXXIV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(cleanup_handler, &m);
while(should_wait)
 pthread_cond_wait(&cv, &m);

read(0, buffer, len);   // read is a cancellation point

pthread_cleanup_pop(1);



CS33 Intro to Computer Systems XXXIV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3
• Start/Stop interface

void wait_for_start(state_t *s){
     pthread_mutex_lock(&s->mutex);
     pthread_cleanup_push(
    cleanup_func, cleanup_arg);

  while(s->state == stopped)
    pthread_cond_wait(&s->queue, &s->mutex);
  pthread_cleanup_pop(1);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}

What should be used for 
cleanup_func and 
cleanup_arg?
a) pthread_mutex_unlock 

and &s->mutex
b) that and more
c) there’s no need for a 

cleanup function 



The slide lists all of the required cancellation points in POSIX.

The function pthread_testcancel is strictly a cancellation point — it has no other 
function. If there are no pending cancels when it is called, it does nothing and simply 
returns.

CS33 Intro to Computer Systems XXXIV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is 

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait
• pthread_join

• pthread_testcancel
• read
• sem_wait
• sigwait
• sigwaitinfo
• sigsuspend
• sigtimedwait
• sleep
• system
• tcdrain
• wait
• waitpid
• write



CS33 Intro to Computer Systems XXXIV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Problem ...

• In thread 1:

if ((ret = open(path,
    O_RDWR) == -1) {
  if (errno == EINTR) {
    ...
  }
  ...
}

• In thread 2:

if ((ret = socket(AF_INET,
    SOCK_STREAM, 0)) {
  if (errno == ENOMEM) {
    ...
  }
  ...
}

There’s only one errno!

However, somehow it works.

What’s done???



When you give gcc the –pthread flag, it, among other things, defines some preprocessor 
variables that cause some code in the standard header files to be compiled (that 
otherwise wouldn’t be). In particular the #define statement given in the slide is compiled.

CS33 Intro to Computer Systems XXXIV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Solution ...

#define errno (*__errno_location())

• __errno_location returns an int * that’s different for 
each thread

• thus each thread has, effectively, its own copy of 
errno



CS33 Intro to Computer Systems XXXIV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Process Address Space

Text

Data

Dynamic

Stack, etc. Thread 1
errno

Stack, etc. Thread 2
errno

Stack, etc. Thread 3
errno



CS33 Intro to Computer Systems XXXIV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Generalizing

• Thread-specific data (sometimes called 
thread-local storage)
– data that’s referred to by global variables, but each 

thread has its own private copy

tsd[0]
tsd[1]
tsd[2]
tsd[3]
tsd[4]
tsd[5]
tsd[6]
tsd[7]

thread 1 tsd[0]
tsd[1]
tsd[2]
tsd[3]
tsd[4]
tsd[5]
tsd[6]
tsd[7]

thread 2



So that we can be certain that it’s the calling thread’s array that is accessed, rather than 
access the TSD array directly, one uses a set of POSIX threads library routines. To find 
an unused slot, one calls pthread_key_create, which returns the index of an available 
slot in its first argument. Its second argument is the address of a routine that’s 
automatically called when the thread terminates, so as to do any cleanup that might be 
necessary (it’s called with the key (index) as its sole argument, and is called only if the 
thread has actually stored a non-null value into the slot). To put a value in a slot, i.e., 
perform the equivalent of TSD[i] = x, one calls pthread_setspecific(i,x). To fetch from the 
slot, one calls pthread_getspecific(i).

CS33 Intro to Computer Systems XXXIV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Some Machinery

• pthread_key_create(&key, cleanup_routine)
– allocates a slot in the TSD arrays
– provides a function to cleanup when threads terminate

• value = pthread_getspecific(key)
– fetches from the calling thread’s array

• pthread_setspecific(key, value)
– stores into the calling thread’s array



Using the thread-specific data functions we can create an alternative (but equivalent) 
implementation of thread-specific errno.

Before any threads (other than the original thread in the process) are created, 
pthread_key_create is called to initialize errno_key, a global variable. We define errno to 
be the value returned by pthread_getspecific – the calling thread’s value of errno. Then 
to set a thread’s errno, we use pthread_setspecific.

CS33 Intro to Computer Systems XXXIV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

errno (Again)

// executed before threads are created

pthread_key_t errno_key; 
pthread_key_create(&errno_key, NULL);

// redefine errno to use thread-specific value
#define errno (int)pthread_getspecific(errno_key);

// set current thread’s errno
pthread_set_specific(errno_key, (void *)ENOMEM);



CS33 Intro to Computer Systems XXXIV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

Earlier we saw that on Linux, errno is defined as
(*__errno_location())

This allows errno to be assigned to as well as 
read from. Could we arrange to do this using an 
implementation based on pthread_getspecific 
and pthread_setspecific?
a) No
b) Yes—easily
c) Yes—not so easily (it involves malloc and 

free)



ELF stands for “executable and linking format” and is the standard format for 
executable and object files used on most Unix systems. The __thread attribute tells gcc 
that each thread is to have its own copy of the variable. A detailed description of how it 
is implemented can be found at http://people.redhat.com/drepper/tls.pdf.

CS33 Intro to Computer Systems XXXIV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Beyond POSIX
TLS Extensions for ELF and gcc
• Thread Local Storage (TLS)

__thread int x=6;
 // Each thread has its own copy of x,
 // each initialized to 6.

 // x may be assigned to and copied from.
 // Linker and compiler do the setup.
 // May be combined with static or extern.
 // Doesn’t make sense for local variables!



In this example, we put together per-thread windows for thread output. Threads call 
getWindow to set up a window for their exclusive use, then call threadWrite to send 
output to their windows. Individual threads can now set up their own windows and write 
to them without having to pass around information describing which are their windows. 
Each thread’s window is referred to by the static global variable my_win.

CS33 Intro to Computer Systems XXXIV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example: Per-Thread Windows

typedef struct {
  wcontext_t win_context;
  int file_descriptor;
} win_t;
__thread static win_t my_win;

void getWindow() {
  my_win.win_context = … ;
  my_win.file_decriptor = … ;
}

int threadWrite(char *buf) {
  int status = write_to_window(
      &my_win, buf);

  return(status);
}

void *tfunc(void * arg) {
  getWindow();

  threadWrite("started");
  …

  func2(…);
}

void func2(…) {
  
  threadWrite(
       "important msg");
  …
}



An example of the single-thread mentality in early Unix is the use of static local storage 
in a number of library routines. An example of this is strtok, which saves a pointer into 
the input string for use in future calls to the function (which we've used extensively in 
earlier projects). This works fine as long as just one thread is using the function, but 
fails if multiple threads use it – each will expect to find its own saved pointer in saveptr, 
but there's only one saveptr. 

CS33 Intro to Computer Systems XXXIV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static Local Storage and Threads

char *strtok(char *str, const char *delim) {
 static char *saveptr;

 ...  // find next token starting at either
  ... // str or saveptr
  ... // update saveptr

 return(&token);
}



As the slide shows, there are at least three techniques for coping with this problem. We 
could use thread-local storage, but this would entail associating a fair amount of storage 
with each thread, even if it is not using strtok. We might simply allocate storage (via 
malloc) inside strtok and return a pointer to this storage. The problem with this is that 
the calls to malloc and free could turn out to be expensive. Furthermore, this makes it 
the caller’s responsibility to free the storage, introducing a likely storage leak.

The solution taken is to redesign the interface. The “thread-safe” version is called 
strtok_r (the r stands for reentrant, an earlier term for “thread-safe”); it takes an 
additional parameter pointing to storage that holds saveptr. Thus the caller is 
responsible for both the allocation and the liberation of the storage containing saveptr; 
this storage is typically a local variable (allocated on the stack), so that its allocation and 
liberation overhead is negligible, at worst.

CS33 Intro to Computer Systems XXXIV–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Use thread local storage
• Allocate storage internally; caller frees it
• Redesign the interface



Here's the thread-safe version of strtok.

CS33 Intro to Computer Systems XXXIV–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Thread-Safe Version

char *strtok_r(char *str, const char *delim,
               char **saveptr) {

 ...  // find next token starting at either
  ... // str or *saveptr
  ... // update *saveptr

 return(&token);
}



Yet another problem that arises when using libraries that were not designed for 
multithreaded programs concerns synchronization. The slide shows what might happen 
if one relied on the single-threaded versions of the standard I/O routines.

CS33 Intro to Computer Systems XXXIV–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shared Data

• Thread 1:
 printf("goto statement reached");

• Thread 2:
 printf("Hello World\n");

• Printed on display:

 go to Hell



To deal with this printf problem, we must somehow add synchronization to printf (and 
all of the other standard I/O functions). A simple way to do this would be to supply 
wrappers for all of the standard I/O functions ensuring that only one thread is operating 
on any particular stream at a time. A better way would be to do the same sort of thing by 
fixing the functions themselves, rather than supplying wrappers (this is what is done in 
most implementations).

CS33 Intro to Computer Systems XXXIV–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Wrap library calls with synchronization 
constructs

• Fix the libraries



After making a library thread-safe, we may discover that many functions have become 
too slow. For example, the standard-I/O functions getc and putc are expected to be fast 
— they are usually implemented as macros. But once we add the necessary 
synchronization, they become rather sluggish — much too slow to put in our innermost 
loops. However, if we are aware of and willing to cope with the synchronization 
requirements ourselves, we can produce code that is almost as efficient as the single-
threaded code without synchronization requirements.

The POSIX-threads specification includes unsynchronized versions of getc and putc — 
getc_unlocked and putc_unlocked. These are exactly the same code as the single-
threaded getc and putc. To use these new functions, one must take care to handle the 
synchronization oneself. This is accomplished with flockfile and funlockfile.

CS33 Intro to Computer Systems XXXIV–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Efficiency

• Standard I/O example
– getc() and putc()

» expensive and thread-safe?
» cheap and not thread-safe?

– two versions
» getc() and putc()

• expensive and thread-safe
» getc_unlocked() and putc_unlocked()

• cheap and not thread-safe
• made thread-safe with flockfile() and 
funlockfile()



CS33 Intro to Computer Systems XXXIV–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Efficiency

• Naive

for(i=0; i<lim; i++)
 putc(out[i]);

• Efficient

flockfile(stdout);

for(i=0; i<lim; i++)
 putc_unlocked(out[i]);
funlockfile(stdout);



According to IEEE Std. 1003.1 (POSIX), all functions it specifies must be thread-safe, 
except for those listed above.

CS33 Intro to Computer Systems XXXIV–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Thread-Safe?

• Everything except

asctime()
basename()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()

ecvt()
encrypt()
endgrent()
endpwent()
endutxent()
fcvt()
ftw()
gcvt()
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr()
gethostbyname()

gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()

getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()

putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strtok()
ttyname()
unsetenv()
wcstombs()
wctomb()


