
CS33 Intro to Computer Systems XXXV–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VI

Yet another problem that arises when using libraries that were not designed for
multithreaded programs concerns synchronization. The slide shows what might happen
if one relied on the single-threaded versions of the standard I/O routines.

CS33 Intro to Computer Systems XXXV–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shared Data

• Thread 1:
 printf("goto statement reached");

• Thread 2:
 printf("Hello World\n");

• Printed on display:

 go to Hell

To deal with this printf problem, we must somehow add synchronization to printf (and
all of the other standard I/O functions). A simple way to do this would be to supply
wrappers for all of the standard I/O functions ensuring that only one thread is operating
on any particular stream at a time. A better way would be to do the same sort of thing by
fixing the functions themselves, rather than supplying wrappers (this is what is done in
most implementations).

CS33 Intro to Computer Systems XXXV–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Wrap library calls with synchronization
constructs

• Fix the libraries

After making a library thread-safe, we may discover that many functions have become
too slow. For example, the standard-I/O functions getc and putc are expected to be fast
— they are usually implemented as macros. But once we add the necessary
synchronization, they become rather sluggish — much too slow to put in our innermost
loops. However, if we are aware of and willing to cope with the synchronization
requirements ourselves, we can produce code that is almost as efficient as the single-
threaded code without synchronization requirements.

The POSIX-threads specification includes unsynchronized versions of getc and putc —
getc_unlocked and putc_unlocked. These are exactly the same code as the single-
threaded getc and putc. To use these new functions, one must take care to handle the
synchronization oneself. This is accomplished with flockfile and funlockfile.

CS33 Intro to Computer Systems XXXV–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Efficiency

• Standard I/O example
– getc() and putc()

» expensive and thread-safe?
» cheap and not thread-safe?

– two versions
» getc() and putc()

• expensive and thread-safe
» getc_unlocked() and putc_unlocked()

• cheap and not thread-safe
• made thread-safe with flockfile() and
funlockfile()

CS33 Intro to Computer Systems XXXV–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Efficiency

• Naive

for(i=0; i<lim; i++)
 putc(out[i]);

• Efficient

flockfile(stdout);

for(i=0; i<lim; i++)
 putc_unlocked(out[i]);
funlockfile(stdout);

According to IEEE Std. 1003.1 (POSIX), all functions it specifies must be thread-safe,
except for those listed above.

CS33 Intro to Computer Systems XXXV–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Thread-Safe?

• Everything except

asctime()
basename()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()

ecvt()
encrypt()
endgrent()
endpwent()
endutxent()
fcvt()
ftw()
gcvt()
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr()
gethostbyname()

gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()

getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()

putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strtok()
ttyname()
unsetenv()
wcstombs()
wctomb()

CS33 Intro to Computer Systems XXXV–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Concurrency

• Real
– many things happen at once
– multiple threads running on multiple cores

• Simulated
– things appear to happen at once
– a single core is multiplexed among multiple threads

» time slicing

This slide illustrates the common view of the architecture of a multi-core processor: a
number of processors are all directly connected to the same memory (which they share).
If one core (or processor) stores into a storage location and immediately thereafter
another core loads from the same storage location, the second core loads exactly what
the first core stored.

Unfortunately, as we learned earlier in the course, things are not quite so simple.

CS33 Intro to Computer Systems XXXV–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multi-Core Processor:
Simple View

Memory
Cores

Real multi-core processors have L1 caches that sit between each core and the memory
bus; there is a single connection between the bus and the memory. When a core issues a
store, the store affects the L1 cache. When a core issues a load, the load is dealt with by
the L1 cache if possible, and otherwise goes to memory (perhaps via a shared L2 cache).
Most architectures have some sort of cache-consistency logic to ensure that the shared-
memory semantics of the previous page are preserved.

However, again as we learned earlier in the course, even this description is too
simplistic.

CS33 Intro to Computer Systems XXXV–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multi-Core Processor:
More Realistic View

Memory
Cores L1Caches Bus

This slide shows an even more realistic model, pretty much the same as what we saw is
actually used in recent processors. Between each core and the L1 cache is a buffer.
Stores by a core go into the buffer. Sometime later the effect of the store reaches the L1
cache. In the meantime, the core is issuing further instructions. Loads by the core are
handled from the buffer if the data is still there; otherwise they go to the L1 cache, and
then perhaps to memory.

In all instances of this model the effect of a store, as seen by other cores, is delayed. In
some instances of this model the order of stores made by one core might be perceived
differently by other cores. Architectures with the former property are said to have
delayed stores; architectures with the latter are said to have reordered stores (an
architecture could well have both properties).

CS33 Intro to Computer Systems XXXV–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Multi-Core Processor:
Even More Realistic

Memory
Cores L1 Caches Bus

buffer

buffer

buffer

buffer

In this example, one thread running on one processor is loading from an integer in
storage; another thread running on another processor is loading from and then storing
into an integer in storage. Can this be done safely without explicit synchronization? (If
it’s done safely, then the value stored by thread 1 into I is either the value of
shared_counter before it’s incremented or its value afterwards).

On most architectures, the answer is yes. If the integer in question is aligned on a
natural (e.g., eight-byte) boundary, then the hardware (perhaps the cache) insures that
loads and stores of the integer are atomic. If loads and stores are not atomic, it might be
the case that the first four bytes of shared_counter are read, then the next four bytes.

However, one cannot assume that this is the case on all architectures. Thus a portable
program must use explicit synchronization (e.g., a mutex) in this situation.

CS33 Intro to Computer Systems XXXV–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Concurrent Reading and Writing

Thread 1:

 i = shared_counter;

Thread 2:

 shared_counter++;

Shown on the slide is Peterson’s algorithm for handling mutual exclusion for two
threads without explicit synchronization. (The me argument for one thread is 0 and for
the other is 1.) This program works given the first two shared-memory models. Does it
work with delayed-store architectures?

The algorithm is from “Myths About the Mutual Exclusion Problem,” by G. L. Peterson,
Information Processing Letters 12(3) 1981: 115–116.

CS33 Intro to Computer Systems XXXV–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mutual Exclusion w/o Mutexes

void peterson(long me) {
 static long loser; // shared
 static long active[2] = {0, 0}; // shared
 long other = 1 – me; // private

 active[me] = 1;
 loser = me;
 while (loser == me && active[other])
 ;

 // critical section

 active[me] = 0;
}

Sunlab computers (as do most modern computers) employ the delayed-store
architecture.

CS33 Intro to Computer Systems XXXV–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void peterson(long me) {
 static long loser; // shared
 static long active[2] = {0, 0}; // shared
 long other = 1 – me; // private

 active[me] = 1;
 loser = me;
 while (loser == me && active[other])
 ;

 // critical section

 active[me] = 0;
}

This works on sunlab
computers.
a) never
b) usually
c) always

This example is a solution, employing “busy waiting,” to the producer-consumer problem
for one consumer and one producer.

This solution to the producer-consumer problem is from “Proving the Correctness of
Multiprocess Programs,” by L. Lamport, IEEE Transactions on Software Engineering,
SE-3(2) 1977: 125-143.

CS33 Intro to Computer Systems XXXV–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Busy-Waiting Producer/Consumer

void producer(char item) {

 while(in – out == BSIZE)
 ;

 buf[in%BSIZE] = item;

 in++;
}

char consumer() {
 char item;
 while(in – out == 0)
 ;

 item = buf[out%BSIZE];

 out++;

 return(item);
}

Sunlab computer have delayed stores.

CS33 Intro to Computer Systems XXXV–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

void producer(char item) {

 while(in – out == BSIZE)
 ;

 buf[in%BSIZE] = item;

 in++;
}

char consumer() {
 char item;
 while(in – out == 0)
 ;

 item = buf[out%BSIZE];

 out++;

 return(item);
}

This works on sunlab
computers.
a) never
b) usually
c) always

CS33 Intro to Computer Systems XXXV–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

void producer(char item) {

 while(in – out == BSIZE)
 ;

 buf[in%BSIZE] = item;

 in++;
}

char consumer() {
 char item;
 while(in – out == 0)
 ;

 item = buf[out%BSIZE];

 out++;

 return(item);
}

This works on computers
with reordered stores.
a) never
b) usually
c) always

The point of the previous several slides is that one cannot rely on expected properties of
shared memory to eliminate explicit synchronization. Shared memory can behave in
some very unexpected ways. However, it is the responsibility of the implementers of the
various synchronization primitives to make certain not only that they behave correctly,
but also that they synchronize memory with respect to other threads.

CS33 Intro to Computer Systems XXXV–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• Don’t rely on shared memory for
synchronization

• Use the synchronization primitives

Assume these are run on a two-core prcessor: why does the two-threaded program on
the right run faster than the two-threaded program on the left?

CS33 Intro to Computer Systems XXXV–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Which Runs Faster?
volatile int a, b;

void *thread1(void *arg) {
 int i;
 for (i=0; i<reps; i++) {
 a = 1;
 }
}

void *thread2(void *arg) {
 int i;
 for (i=0; i<reps; i++) {
 b = 1;
 }
}

volatile int a, padding[128], b;

void *thread1(void *arg) {
 int i;
 for (i=0; i<reps; i++) {
 a = 1;
 }
}

void *thread2(void *arg) {
 int i;
 for (i=0; i<reps; i++) {
 b = 1;
 }
}

Processors usually employ data caches that are organized as a set of cache lines,
typically of 64 bytes in length. Thus data is fetched from and stored to memory in units
of the cache-line size. Each processor has its own data cache.

CS33 Intro to Computer Systems XXXV–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Cache Lines

Tag Index Offset

L1 Cache

Tag Data
Cache Line

Address

Getting back to our example: we have a two-processor system, and thus two data (L1)
caches. If a and b are in the same cache line, then when either processor accesses a, it
also accesses b. Thus if a is modified on processor 1, memory coherency will cause the
entire cache line to be invalidated on processor 2. Thus when processor 2 attempts to
access b, it will get a cache miss and be forced to go to memory to update the cache line
containing b. From the programmer’s perspective, a and b are not shared. But from the
cache’s perspective, they are. This phenomenon is known as false sharing, and is a
source of performance problems.

For further information about false sharing and for tools to deal with it, see
http://emeryblogger.com/2011/07/06/precise-detection-and-automatic-mitigation-of-
false-sharing-oopsla-11/.

CS33 Intro to Computer Systems XXXV–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

False Sharing

L1 Cache

Tag
Cache Line

a b

L1 Cache

Tag
Cache Line

a b

CS33 Intro to Computer Systems XXXV–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

• Strategy
– make the usual case (no waiting) very fast
– can afford to take more time for the other case

(waiting for the mutex)

For details on futexes, avoid the Linux man pages, but look at
http://people.redhat.com/drepper/futex.pdf, from which this material was obtained.
Note that there’s actually just one futex system call; whether it’s a wait or a wakeup is
specified by an argument.

CS33 Intro to Computer Systems XXXV–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Futexes

• Safe, efficient kernel conditional queueing in Linux
• All operations performed atomically

– futex_wait(futex_t *futex, int val)
» if futex->val is equal to val, then sleep
» otherwise return

– futex_wake(futex_t *futex)
» wake up one thread from futex’s wait queue, if there are

any waiting threads

These functions are available on most architectures, particularly on the x86. Note that
their effect must be atomic: everything happens at once.

CS33 Intro to Computer Systems XXXV–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

• int atomic_inc(int *val)
– add 1 to *val, return its original value

• int atomic_dec(int *val)
– subtract 1 from *val, return its original value

• int CAS(int *ptr, int old, int new) {
 int tmp = *ptr;
 if (*ptr == old)
 *ptr = new;
 return tmp;
}

If the futex's value is 0, it's unlocked, otherwise it's locked.

CS33 Intro to Computer Systems XXXV–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock(futex_t *futex) {
 int c;
 while ((c = atomic_inc(&futex->val)) != 0)
 futex_wait(futex, c+1);
}

void unlock(futex_t *futex) {
 futex->val = 0;
 futex_wake(futex);
}

CS33 Intro to Computer Systems XXXV–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 4

void lock(futex_t *futex) {
 int c;
 while ((c = atomic_inc(&futex->val)) != 0)
 futex_wait(futex, c+1);
}

void unlock(futex_t *futex) {
 futex->val = 0;
 futex_wake(futex);
}

Why doesn’t Attempt 1 work?
a) unlock fails to wake up a sleeping

thread in certain circumstances
b) the while loop in lock doesn’t

terminate in certain circumstances
c) both of the above
d) none of the above

In this version, if the futex's value is 0, it's unlocked, if it's one it's locked and no
threads are waiting for it; if it's greater than one it's locked and there might be threads
waiting for it.

CS33 Intro to Computer Systems XXXV–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 2
void lock(futex_t *futex) {
 int c;
 if ((c = CAS(&futex->val, 0, 1) != 0)
 do {
 if (c == 2 || (CAS(&futex->val, 1, 2) != 0))
 futex_wait(futex, 2);
 while ((c = CAS(&futex->val, 0, 2)) != 0))
}

void unlock(futex_t *futex) {
 if (atomic_dec(&futex->val) != 1) {
 futex->val = 0;
 futex_wake(futex);
 }
}

Quiz 5

Does it work?
a) yes
b) no

