
CS33 Intro to Computer Systems XXXVI–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VII

CS33 Intro to Computer Systems XXXVI–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

• Strategy
– make the usual case (no waiting) very fast
– can afford to take more time for the other case

(waiting for the mutex)

For details on futexes, avoid the Linux man pages, but look at
http://people.redhat.com/drepper/futex.pdf, from which this material was obtained.
Note that there’s actually just one futex system call; whether it’s a wait or a wakeup is
specified by an argument.

CS33 Intro to Computer Systems XXXVI–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Futexes

• Safe, efficient kernel conditional queueing in Linux
• All operations performed atomically

– futex_wait(futex_t *futex, int val)
» if futex->val is equal to val, then sleep
» otherwise return

– futex_wake(futex_t *futex)
» wake up one thread from futex’s wait queue, if there are

any waiting threads

These functions are available on most architectures, particularly on the x86. Note that
their effect must be atomic: everything happens at once.

How can these instructions be made to be atomic? What’s done is memory is accessed
via special instructions that cause the memory controller to respond to a load then a
store without anything happening in between. Thus, for the example of atomic_inc, val
is loaded from memory, then incremented (in the processor), then stored back to
memory. While this happens, no other load or stores may be done. If this were done for
every instruction, memory access would slow down considerably, but doing it just
occasionally has no severe effect.

CS33 Intro to Computer Systems XXXVI–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

• int atomic_inc(int *val)
– add 1 to *val, return its original value

• int atomic_dec(int *val)
– subtract 1 from *val, return its original value

• int CAS(int *ptr, int old, int new) {
 int tmp = *ptr;
 if (*ptr == old)
 *ptr = new;
 return tmp;
}

If the futex's value is 0, it's unlocked, otherwise it's locked.

CS33 Intro to Computer Systems XXXVI–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock(futex_t *futex) {
 int c;
 while ((c = atomic_inc(&futex->val)) != 0)
 futex_wait(futex, c+1);
}

void unlock(futex_t *futex) {
 futex->val = 0;
 futex_wake(futex);
}

CS33 Intro to Computer Systems XXXVI–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void lock(futex_t *futex) {
 int c;
 while ((c = atomic_inc(&futex->val)) != 0)
 futex_wait(futex, c+1);
}

void unlock(futex_t *futex) {
 futex->val = 0;
 futex_wake(futex);
}

Why doesn’t Attempt 1 work?
a) unlock fails to wake up a sleeping

thread in certain circumstances
b) the while loop in lock doesn’t

terminate in certain circumstances
c) both of the above
d) none of the above

In this version, if the futex's value is 0, it's unlocked, if it's one it's locked and no
threads are waiting for it; if it's greater than one it's locked and there might be threads
waiting for it.

CS33 Intro to Computer Systems XXXVI–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 2
void lock(futex_t *futex) {
 int c;
 if ((c = CAS(&futex->val, 0, 1) != 0)
 do {
 if (c == 2 || (CAS(&futex->val, 1, 2) != 0))
 futex_wait(futex, 2);
 while ((c = CAS(&futex->val, 0, 2)) != 0))
}

void unlock(futex_t *futex) {
 if (atomic_dec(&futex->val) != 1) {
 futex->val = 0;
 futex_wake(futex);
 }
}

Quiz 2
Does it work?
a) always
b) except for

pathological cases
c) rarely
d) never

In a naïve multithreaded implementation of malloc/free, there is one mutex protecting
the heap, resulting in a bottleneck – a multithreaded program might be slowed down
considerably since all threads that manipulate the heap must compete for the mutex.

CS33 Intro to Computer Systems XXXVI–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Allocation

• Multiple threads

• One heap
Bottleneck?

CS33 Intro to Computer Systems XXXVI–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 0:

Use your malloc implementation but use
mutexes to make it thread-safe

1) Use a single mutex to protect the heap
• no concurrent access

2) Use a mutex per block
• concurrent access to the heap

CS33 Intro to Computer Systems XXXVI–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Solution 0.2 is not used because
a) Since the free list is circular, deadlock

cannot be avoided
b) Since each core accesses memory via its

private L1 cache, memory blocks used by
one thread cannot be safely shared with
others

c) There will be too many calls to lock and
unlock mutexes, slowly things down a lot

d) Since there must be a mutex per block, too
much memory is wasted

e) Something else

CS33 Intro to Computer Systems XXXVI–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not a Quiz

How can it be done better?

CS33 Intro to Computer Systems XXXVI–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 1

• Divvy up the heap among the threads
– each thread has its own heap
– no mutexes required
– no bottleneck

• How much heap does each thread get?
• What if one thread frees memory malloc’d by

another?

CS33 Intro to Computer Systems XXXVI–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 2

• Multiple “arenas”
– each with its own mutex
– thread allocates from the first one it can find whose

mutex was unlocked
» if none, then creates new one

– deallocations go back to original arena

For the latter case, the freed block goes back to the global list.

CS33 Intro to Computer Systems XXXVI–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 3

• Global heap plus per-thread heaps
– threads pull storage from global heap only when

needed
– freed storage goes to per-thread heap

» unless things are imbalanced
• then thread moves storage back to global heap

– mutex on only the global heap
• What if one thread frees memory malloc’d by

another?

CS33 Intro to Computer Systems XXXVI–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Malloc/Free Implementations

• ptmalloc
– based on solution 2
– in glibc (i.e., used by default)

• tcmalloc
– based on solution 3
– from Google

• Which is best?

In this test program, each thread does a sequence of mallocs and frees.

CS33 Intro to Computer Systems XXXVI–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program
const unsigned int N=64, nthreads=32, iters=10000000;
int main() {
 void *tfunc(void *);
 pthread_t thread[nthreads];
 for (int i=0; i<nthreads; i++) {
 pthread_create(&thread[i], 0, tfunc, (void *)i);
 pthread_detach(thread[i]);
 }
 pthread_exit(0);
}
void *tfunc(void *arg) {
 long i;
 for (i=0; i<iters; i++) {
 long *p = (long *)malloc(sizeof(long)*((i%N)+1));
 free(p);
 }
 return 0;
}

CS33 Intro to Computer Systems XXXVI–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not a Quiz

Which is fastest?
a) glibc (i.e., standard Linux)
b) Google

CS33 Intro to Computer Systems XXXVI–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It …

% gcc -o ptalloc alloc.c –lpthread

% gcc -o tcalloc alloc.c –lpthread -ltcmalloc

The code was run on an Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz (4 cores).

The rows labelled user show the sums of the amount of time each thread spent running
in user mode. The rows labelled sys show the sums of the amount of time each thread
spent running in kernel mode. The rows labelled real show the time that elapsed from
when the command started to when it ended. It’s less than the sum of the user and sys
times because multiple cores were employed: for example, if two threads running
simultaneously (on different cores) each used 1 second of user time, the total user time
is 2 seconds, but the real time is one second.

CS33 Intro to Computer Systems XXXVI–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc

real 0m5.142s
user 0m20.501s
sys 0m0.024s
$ time ./tcalloc
real 0m1.889s

user 0m7.492s
sys 0m0.008s

This was run on a 2023 CS department computer: AMD Ryzen 5 3600 @ 7.20GHz (6
cores). There were 4 times as many iterations as was done in 2014.

CS33 Intro to Computer Systems XXXVI–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2024) …

$ time ./ptalloc

real 0m0.558s
user 0m6.141s
sys 0m0.020s
$ time ./tcalloc
real 0m0.400s

user 0m4.458s
sys 0m0.008s

strace is a system facility that supplies information about the system calls a process
uses. The –c flag tells it to print the cumulative statistics after the process terminates.
The –f flag tells it to include information on all threads and child processes.

Note that the times reported are the total times taken by all threads and don’t account
for concurrency: i.e., two threads might each take two seconds, totalling to 4 seconds,
but the real time used is just two seconds. What’s signficant are the counts: the number
of calls and the number of errors. Thus it’s clear that ptalloc makes significantly more
calls to futex than does tcalloc. Errors indicates the number of times that futex_wait
returned because its second argument (val) was not equal to futex->val.

CS33 Intro to Computer Systems XXXVI–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?
$ strace –c –f ./ptalloc
 …
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
100.00 0.040002 13 3007 520 futex
 …

$ strace –c –f ./tcalloc
 …
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

 …
0.00 0.000000 0 59 13 futex

 …

CS33 Intro to Computer Systems XXXVI–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2024)?
$ strace –c –f ./ptalloc
 …
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 …
0.00 0.000000 0 1 futex

 …

$ strace –c –f ./tcalloc
 …
% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------
 …
 0.38 0.000016 1 10 futex
 …

This program creates pairs of threads: one thread allocates storage, the other deallocates
storage. They communicate using producer-consumer communication.

CS33 Intro to Computer Systems XXXVI–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 1

#define N 64
#define npairs 16
#define allocsPerIter 1024
const long iters = 8*1024*1024/allocsPerIter;
#define BufSize 10240
typedef struct buffer {
 int *buf[BufSize];
 unsigned int nextin;
 unsigned int nextout;
 sem_t empty;
 sem_t occupied;
 pthread_t pthread;
 pthread_t cthread;
} buffer_t;

The main function creates npairs (16) of communicating pairs of threads.

CS33 Intro to Computer Systems XXXVI–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 2

int main() {
 long i;
 buffer_t b[npairs];
 for (i=0; i<npairs; i++) {
 b[i].nextin = 0;
 b[i].nextout = 0;

 sem_init(&b[i].empty, 0, BufSize/allocsPerIter);
 sem_init(&b[i].occupied, 0, 0);
 pthread_create(&b[i].pthread, 0, prod, &b[i]);
 pthread_create(&b[i].cthread, 0, cons, &b[i]);
 }
 for (i=0; i<npairs; i++) {
 pthread_join(b[i].pthread, 0);
 pthread_join(b[i].cthread, 0);
 }
 return 0;
}

To reduce the number of calls to sem_wait and sem_post, at each iteration the thread
calls malloc allocsPerIter (1024) times.

CS33 Intro to Computer Systems XXXVI–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 3

void *prod(void *arg) {
 long i, j;
 buffer_t *b = (buffer_t *)arg;
 for (i = 0; i<iters; i++) {
 sem_wait(&b->empty);
 for (j = 0; j<allocsPerIter; j++) {
 b->buf[b->nextin] = malloc(sizeof(int)*((j%N)+1));
 if (++b->nextin >= BufSize)
 b->nextin = 0;
 }
 sem_post(&b->occupied);
 }

 return 0;
}

CS33 Intro to Computer Systems XXXVI–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 4

void *cons(void *arg) {
 long i, j;
 buffer_t *b = (buffer_t *)arg;
 for (i = 0; i<iters; i++) {
 sem_wait(&b->occupied);
 for (j = 0; j<allocsPerIter; j++) {
 free(b->buf[b->nextout]);
 if (++b->nextout >= BufSize)
 b->nextout = 0;
 }
 sem_post(&b->empty);
 }

 return 0;
}

The code was run on a SunLab machine (an Intel(R) Core(TM)2 Quad CPU Q6600 @
2.40GHz).

CS33 Intro to Computer Systems XXXVI–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc2

real 0m1.087s
user 0m3.744s
sys 0m0.204s
$ time ./tcalloc2
real 0m3.535s

user 0m11.361s
sys 0m2.112s

This was run on a 2024 CS department computer: AMD Ryzen 5 3600 @ 7.20GHz (6
cores).

CS33 Intro to Computer Systems XXXVI–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2024) …

$ time ./ptalloc2

real 0m1.594s
user 0m8.778s
sys 0m2.551s
$ time ./tcalloc2
real 0m7.089s

user 0m59.871s
sys 0m11.220s

CS33 Intro to Computer Systems XXXVI–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace –c –f ./ptalloc2
 …
% time seconds usecs/call calls errors syscall
 …
------ ----------- ----------- --------- --------- ----------------
 …

93.04 8.246196 117 70173 20775 futex
…
$ strace –c –f ./tcalloc2
 …
% time seconds usecs/call calls errors syscall
 …

------ ----------- ----------- --------- --------- ----------------
99.92 47.796676 153 311012 7244 futex
 …

CS33 Intro to Computer Systems XXXVI–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2024)?

$ strace –c –f ./ptalloc2
 …
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
98.55 55.917331 138 403494 108889 futex
…

$ strace –c –f ./tcalloc2
 …
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.98 298.581838 149 2002633 22522 futex
 …

