CS 33

Multithreaded Programming VIl

CS33 Intro to Computer Systems XXXVI-1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

« Strategy

— make the usual case (no waiting) very fast

— can afford to take more time for the other case
(waiting for the mutex)

CS33 Intro to Computer Systems XXXVI-2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Futexes

« Safe, efficient kernel conditional queueing in Linux

 All operations performed atomically
— futex wailt (futex t *futex, 1int val)
» if futex->val is equal to val, then sleep
» otherwise return
— futex wake (futex t *futex)

» wake up one thread from futex’s wait queue, if there are
any waiting threads

CS33 Intro to Computer Systems XXXVI-3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

e int atomic inc(int *val)

— add 1 to *val, return its original value

* int atomic dec(int *val)

— subtract 1 from *val, return its original value

e int CAS (1int *ptr,
int tmp = *ptr;
if (*ptr old)

*ptr = new;

return tmp;

int old,

int new) {

CS33 Intro to Computer Systems XXXVI-4

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock (futex t *futex)
int c;
while ((c = atomic inc(&futex->val)) != 0)

futex wait (futex, c+1);

void unlock (futex t *futex) {
futex->val = 0;

futex wake (futex);

CS33 Intro to Computer Systems XXXVI-5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

void lock (futex t *futex)
int c;
while ((c = atomic inc(&futex->val)) != 0)

futex wait (futex, c+l);

void unlock (futex t *futex) {

futex->val = 0; Why doesn’t Attempt 1 work?

a) unlock fails to wake up a sleeping
thread in certain circumstances

J b) the while loop in lock doesn’t
terminate in certain circumstances

c) both of the above

d) none of the above

futex wake (futex);

CS33 Intro to Computer Systems XXXVI-6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Attempt 2

void lock (futex t *futex)

int c;
if ((c = CAS(&futex->val, 0, 1) != 0)
do {
if (c == || (CAS (&futex->val, 1, 2) != 0))
futex wait (futex, 2);
while ((c = CAS(&futex->val, 0, 2)) != 0))
}
Quiz 2
void unlock (futex t *futex) {
if (atomic dec(gfutex—>val) = 1) { Does it work?

— a) always
futex->val = 0; b) except for
futex wake (futex) ; pathological cases

} c) rarely
) d) never

CS33 Intro to Computer Systems XXXVI-7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Memory Allocation

» Multiple threads |
— Bottleneck?

* One heap

CS33 Intro to Computer Systems XXXVI-8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 0:

Use your malloc implementation but use
mutexes to make it thread-safe

1) Use a single mutex to protect the heap
° no concurrent access

2) Use a mutex per block
« concurrent access to the heap

CS33 Intro to Computer Systems XXXVI-9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Solution 0.2 is not used because

a) Since the free list is circular, deadlock
cannot be avoided

b) Since each core accesses memory via its
private L1 cache, memory blocks used by
one thread cannot be safely shared with
others

c) There will be too many calls to lock and
unlock mutexes, slowly things down a lot

d) Since there must be a mutex per block, too
much memory is wasted

e) Something else

CS33 Intro to Computer Systems XXXVI-10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not a Quiz

How can it be done better?

CS33 Intro to Computer Systems XXXVI-11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 1

* Divvy up the heap among the threads

— each thread has its own heap
— no mutexes required
— no bottleneck

 How much heap does each thread get?

 What if one thread frees memory malloc’d by
another?

CS33 Intro to Computer Systems XXXVI-12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 2

* Multiple “arenas”

— each with its own mutex

— thread allocates from the first one it can find whose
mutex was unlocked

» if none, then creates new one
— deallocations go back to original arena

CS33 Intro to Computer Systems XXXVI-13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Solution 3

* Global heap plus per-thread heaps

— threads pull storage from global heap only when
needed

— freed storage goes to per-thread heap
» unless things are imbalanced
» then thread moves storage back to global heap

— mutex on only the global heap

 What if one thread frees memory malloc’d by
another?

CS33 Intro to Computer Systems XXXVI-14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Malloc/Free Implementations

* ptmalloc

— based on solution 2

— in glibc (i.e., used by default)
« tcmalloc

— based on solution 3
— from Google

* Which is best?

CS33 Intro to Computer Systems XXXVI-15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program

const unsigned int N=64, nthreads=32, 1ters=10000000;
int main() {
void *tfunc (void *);
pthread t thread[nthreads];
for (int 1i=0; i<nthreads; 1++) {
pthread create(&thread[i], 0, tfunc, (void *)1i);
pthread detach (thread[i]):;
}
pthread exit (0);
}
void *tfunc(void *arg) {
long i;
for (1=0; i<iters; i++) {
long *p = (long *)malloc (sizeof (long)* ((13N)+1));
free(p);
}

return 0O;
}

CS33 Intro to Computer Systems XXXVI-16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Not a Quiz

Which is fastest?
a) glibc (i.e., standard Linux)
b) Google

CS33 Intro to Computer Systems XXXVI-17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling It ...

5 gcc -o ptalloc alloc.c -lpthread
5 gcc -o tcalloc alloc.c —-lpthread -ltcmalloc

CS33 Intro to Computer Systems XXXVI-18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2014) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc

Om5.142s

Om20.501s
Om0.024s

./tcalloc

Oml.889s
Om7.492s
Om0.008s

CS33 Intro to Computer Systems XXXVI-19

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2024) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc

OmO.558s
Omo.141s
Om0.020s

./tcalloc

Om0.400s
Om4 .458s
Om0.008s

CS33 Intro to Computer Systems

XXXVI-20

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace -c¢ —-f ./ptalloc

% time seconds usecs/call

100.00 0.040002 13

S strace -c¢ -f ./tcalloc

% time seconds usecs/call
0.00 0.000000 0

calls errors syscall
3007 520 futex

calls errors syscall
59 13 futex

CS33 Intro to Computer Systems

XXXVI-21

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2024)?

$ strace -c¢ —-f ./ptalloc

% time seconds usecs/call calls errors syscall

0.00 0.000000 0 1 futex

S strace -c¢c —-f ./tcalloc

% time seconds usecs/call calls errors syscall

0.38 0.000016 1 10 futex

CS33 Intro to Computer Systems XXXVI-22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 1

tdefine N 64

#tdefine npairs 16

tdefine allocsPerIter 1024

const long iters = 8*1024*1024/allocsPerlter;

#define BufSize 10240

typedef struct buffer {
int *buf[BufSize];
unsigned int nextin;
unsigned int nextout;
sem t empty;
sem t occupied;
pthread t pthread;
pthread t cthread;

} buffer t;

CS33 Intro to Computer Systems XXXVI-23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 2

int main () {
long 1;
buffer t b[npairs];
for (i=0; i<npairs; i++) {
b[i] .nextin = 0;
bl[i] .nextout = 0;
sem init(&b[i].empty, 0, BufSize/allocsPerlter);
sem init(&b[1].occupied, 0, O0);
pthread create(&b[1i].pthread, 0, prod, &b[i1]);
pthread create(&b[i].cthread, 0, cons, &b[1]);
}
for (i=0; i<npairs; i++) {
pthread join(b[i].pthread, 0);
pthread join(b[i].cthread, 0);
}

return 0O;

}

CS33 Intro to Computer Systems XXXVI-24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 3

void *prod(void *arg) {

long i, J;
buffer t *b = (buffer t *)arg;
for (1 = 0; i<iters; 1++) {

sem walt (&b->empty) ;
for (3 = 0; j<allocsPerlter; j++) {
b->buf [b->nextin] = malloc(sizeof (int)* ((jJ%3N)+1))
if (++b->nextin >= BufSize)
b->nextin = 0;
}
sem post (&b->occupied) ;

}

return 0O;

CS33 Intro to Computer Systems XXXVI-25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 4

void *cons (void *arg) {

long i, J;
buffer t *b = (buffer t *)arg;
for (1 = 0; i<iters; 1++) {

sem walt (&b->occupied) ;

for (3 = 0; j<allocsPerlter; j++) {
free (b->buf [b->nextout]) ;
if (++b->nextout >= BufSize)

b->nextout = 0;
}
sem post (&b->empty) ;
}

return 0O;

CS33 Intro to Computer Systems XXXVI-26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2014) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc?2

Oml.087s
Om3.744s
Om0.204s

./tcalloc?

Om3.535s
Omll.36ls
Om2.112s

CS33 Intro to Computer Systems XXXVI-27

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Running It (2024) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc?2

Oml.594s
Om8.778s
Om2.551s

./tcalloc?

Om7.089s
Om59.871s
Oml1.220s

CS33 Intro to Computer Systems XXXVI-28

Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace -c¢ —-f ./ptalloc2

o

% time seconds usecs/call calls errors syscall

93.04 8.240196 117 70173 20775 futex

S strace -c¢c —-f ./tcalloc?2

o

% time seconds usecs/call calls errors syscall

99.92 47.7966°76 153 311012 7244 futex

CS33 Intro to Computer Systems XXXVI-29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On (2024)?

$ strace -c¢ —-f ./ptalloc2

% time seconds usecs/call calls errors syscall

98.55 55.917331 138 403494 108889 futex
S strace -c¢c -f ./tcalloc?2

% time seconds usecs/call calls errors syscall

99.98 298.581838 149 2002633 22522 futex

CS33 Intro to Computer Systems XXXVI-30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

