
Today’s lecture is partly based on “On-the-Fly Garbage Collection: An Exercise in
Cooperation”, by E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Steffens:
https://lamport.azurewebsites.net/pubs/garbage.pdf. The paper was published in the
Communications of the ACM in November 1978.

CS33 Intro to Computer Systems XXXVII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VIII

CS33 Intro to Computer Systems XXXVII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Garbage Collection

• malloc − free
– when a malloc’d block is no longer needed (it’s

garbage), it’s (eventually) automatically returned to
the free list
» how is this done?
» can it be done by one thread, while other threads are

calling malloc and using the memory?

If a group of nodes form a cycle, then their reference counts will always be positive.

CS33 Intro to Computer Systems XXXVII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Identifying Garbage – Reference
Counts

• Assume all memory blocks are nodes in a
graph, each with two links
– for each block, keep reference counts: how many

other blocks point to it
– if reference count is 0, then no node points to it and

it’s garbage
» certain nodes are designated as roots—it’s ok if no

nodes point to them

Root

11

2

11

1

CS33 Intro to Computer Systems XXXVII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

If we can guarantee that the graph formed by
memory nodes has no cycles, then reference
counts form an effective means for identifying
garbage.
a) yes: a node is garbage if and only if its

reference count is 0
b) yes: if a node’s reference count is 0, it’s

garbage, but it might be necessary to
remove some garbage nodes to find others

c) no: a node could have a reference count of 0
and not be garbage

CS33 Intro to Computer Systems XXXVII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Identifying Garbage – Mark and
Sweep

• Identify all nodes that lie on paths that start
from a root

• All other nodes, being unreachable, are
garbage

In this code, we assume that each node has a left link and a right link. We also assume
that there is only one root (though it could easily be modified to handle multiple roots).
Any node that is not on a path from the root is garbage.

CS33 Intro to Computer Systems XXXVII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Code

void mark(node_t *root) {
 if (!node->visited) {
 node->visited = 1;
 if (node->left) mark(node->left);
 if (node->right) mark(node->right);
 }

}

void sweep(void) {
 for (int i=0; i<M; i++) {
 if (node[i].visited == 0)
 free(node);

 node[i].visited = 0;
 }
}

CS33 Intro to Computer Systems XXXVII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mutator

Threads that modify the graph (perhaps
malloc’ing new nodes) are called mutators.

• Mutators perform mutate operations on
individual nodes. They might
• change either the left or right link of a node to point

to a non-garbage node, possibly resulting in the old
target becoming garbage

• cause a node to point to a newly allocated node
• cause a link to be NULL

Can the mutator and the garbage collector run
in parallel as separate threads?

Initially, there’s a path from the root to C via A (but not via B). Then after a couple
mutator operations, a path through B appears, but the one through A goes away. During
the mark phase of garbage collection, it might first mark what B is linked to. Then, after
the link from B to C appears and the one from A to C goes away, it marks what A is
connected to. Thus it misses the fact that C is reachable (though the path taken to reach
it changes).

CS33 Intro to Computer Systems XXXVII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Problem

Root

A B

C

We modify the mutator so that when one of its links is modified, the old target of the link
is marked as having been visited.

CS33 Intro to Computer Systems XXXVII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Fix

void mutate(node_t *node, int dir, node_t *new_target) {
 if (dir == LEFT) {
 node->left.visited = 1;
 node->left = new_target;
 } else { // dir == RIGHT
 node->right.visited = 1;
 node->right = new_target;
 }
}

CS33 Intro to Computer Systems XXXVII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

The fix:
a) allows the mutator and GC to correctly run

concurrently
b) solves the specific problem of two slides

ago, but leaves other problems unsolved
c) solves nothing

The problem of the earlier slide is exacerbated if another node is pointed to (only) by C.

CS33 Intro to Computer Systems XXXVII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Problem++
Root

A B

C

D

CS33 Intro to Computer Systems XXXVII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• When a node is marked “visited”, we must
mark all nodes reachable from it

• It’s necessary to distinguish nodes that have
been visited and whose direct descendants
have also been marked visited from those
that have only been visited
– visited = 0: not visited
– visited = 1: visited, but status of direct descendants

is unknown
– visited = 2: visited and direct descendants are

marked visited (1 or 2)
• Ultimately, all nodes will have visited values

of 0 (meaning garbage) or 2 (nongarbage)

With this new version of mark, rather than perform a depth-first search of the graph, we
possibly repeatedly examine all nodes after setting the root (or roots) as visited. Because
of this property, this is not a practical algorithm.

The visit function sets the visited field of the argument node to 1 if it was 0, but leaves it
unchanged otherwise.

CS33 Intro to Computer Systems XXXVII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

New Mark Function
void mark(void) {
 root->visited = 1;
 i=0;
 k=M; // total number of nodes in memory
 while (k>0) {
 if (node[i].visited == 1) {
 k = M; // reset k so all nodes are reexamined
 visit(node[i].left);
 visit(node[i].right);
 node[i].visited = 2;
 } else
 k--; // the node’s visited value was 0 or 2
 i = i++ mod M; // not legal C syntax
 }
}

The new mutate function sets the visited field of the old target to 1 if it was zero, but
leaves it unchanged otherwise.

CS33 Intro to Computer Systems XXXVII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

New Mutate Function

void mutate(node_t *node, int dir, node_t *new_target) {
 if (dir == LEFT) {
 visit(node->left);
 node->left = new_target;
 } else { // dir == RIGHT
 visit(node->right);
 node->right = new_target;
 }
}

CS33 Intro to Computer Systems XXXVII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Assume that each line of code is executed
atomically. Suppose, during the execution of
mark by the GC thread, a mutator thread causes
a node (that previously was not garbage) to
become garbage. That node’s visited field will
become 0 (causing it to be treated as garbage)
a) during the current execution of mark
b) during the upcoming execution of sweep
c) during the next execution of mark
d) never

CS33 Intro to Computer Systems XXXVII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Visit and Sweep Functions

void visit(node_t *node) {
 if (node->visited == 0)
 node->visited = 1;
}

void sweep(void) {
 for (int i=0; i<M; i++) {
 if (node[i].visited == 0)
 free(node);
 node[i].visited = 0;
 }

}

Quiz 4
When sweep is being
executed, will it
encounter any nodes
for which visited is 1?
a) yes
b) no

CS33 Intro to Computer Systems XXXVII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries

CS33 Intro to Computer Systems XXXVII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Libraries

• Collections of useful stuff
• Allow you to:

– incorporate items into your program
– substitute new stuff for existing items

• Often ugly …

Files ending with “.a” are known as archives or static libraries.

CS33 Intro to Computer Systems XXXVII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Library

$ gcc -c sub1.c sub2.c sub3.c
$ ls
sub1.c sub2.c sub3.c
sub1.o sub2.o sub3.o
$ ar cr libpriv1.a sub1.o sub2.o sub3.o
$ ar t libpriv1.a
sub1.o
sub2.o
sub3.o
$

The function “puts” is from the standard-I/O library, just as printf is, but it’s
far simpler. It prints its single string argument, appending a ‘\n’ (newline) to
the end.

Note that “-lpriv1” (the second character of the string is a lower-case L and the
last character is the numeral one) is, in this example, shorthand for libpriv1.a,
but we’ll soon see that it’s shorthand for more than that.

Normally, libraries are expected to be found in the current directory. The “-L”
flag is used to specify additional directories in which to look for libraries.

CS33 Intro to Computer Systems XXXVII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using a Library

$ cat prog.c
int main() {
 sub1();
 sub2();
 sub3();
}

$ cat sub1.c
void sub1() {
 puts("sub1");
}

$ gcc -o prog prog.c -L. -lpriv1
$./prog
sub1
sub2
sub3

Where does puts come from?

$ gcc –o prog prog.c –L. \
 -lpriv1 \
 –L/lib/x86_64-linux-gnu -lc

CS33 Intro to Computer Systems XXXVII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static-Linking: What’s in the
Executable

• ld puts in the executable:
» (assuming all .c files have been compiled into .o files)

– all .o files from argument list (including those newly
compiled)

– .o files from archives as needed to satisfy
unresolved references
» some may have their own unresolved references that

may need to be resolved from additional .o files from
archives

» each archive processed just once (as ordered in
argument list)
• order matters!

CS33 Intro to Computer Systems XXXVII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ cat prog2.c
int main() {
 void func1();
 func1();
 return 0;
}
$ cat func1.c
void func1() {
 void func2();
 func2();
}
$ cat func2.c
void func2() {
}

CS33 Intro to Computer Systems XXXVII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Order Matters ...

$ ar t libf1.a

func1.o
$ ar t libf2.a
func2.o
$ gcc –o prog2 prog2.c -L. –lf1 –lf2
$

$ gcc –o prog2 prog2.c -L. –lf2 –lf1
./libf1.a(sub1.o): In function `func1':
func1.c:(.text+0xa): undefined reference to `func2'
collect2: error: ld returned 1 exit status

CS33 Intro to Computer Systems XXXVII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Substitution

$ cat myputs.c
int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));
 write(1, "\n", 1);
 return 1;
}
$ gcc –c myputs.c
$ ar cr libmyputs.a myputs.o
$ gcc -o prog prog.c -L. –lpriv1 -lmyputs
$./prog
My puts: sub1
My puts: sub2
My puts: sub3

CS33 Intro to Computer Systems XXXVII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use
printf?

CS33 Intro to Computer Systems XXXVII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run

CS33 Intro to Computer Systems XXXVII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all

Linux supports two kinds of libraries — static libraries, contained in archives, whose
names end with “.a” (e.g. libc.a) and shared objects, whose names end with “.so” (e.g.
libc.so). When ld is invoked to handle the linking of object code, it is normally given a
list of libraries in which to find unresolved references. If it resolves a reference within a
.a file, it copies the code from the file and statically links it into the object code.
However, if it resolves the reference within a .so file, it records the name of the shared
object (not the complete path, just the final component) and postpones actual linking
until the program is executed.

If the program is fully bound and relocated, then it is ready for direct execution.
However, if it is not fully bound and relocated, then ld arranges things so that when the
program is executed, rather than starting with the program’s main function, a runtime
version of ld, called ld-linux.so, is called first. ld-linux.so maps all the required libraries
into the address space and then calls the main routine.

CS33 Intro to Computer Systems XXXVII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a”
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking

and relocation steps, if necessary

The –fPIC flag tells gcc to produce “position-independent code,” which is
something we discuss soon. The ld command invokes the loader directly. The –
shared flag tells it to created a shared object. In this case, it’s creating it from
the object file myputs.o and calling the shared object libmyputs.so.

The “-Wl,-rpath /home/twd/libs” flag (the third character of the string is a
lower-case L) tells the loader to indicate in the executable (prog) that ld-
linux.so should look in the indicated directory for shared objects. (The “-Wl”
part of the flag tells gcc to pass the rest of the flag to the loader.)

CS33 Intro to Computer Systems XXXVII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Shared Library

$ gcc -fPIC -c myputs.c
$ ld -shared -o libmyputs.so myputs.o
$ gcc -o prog prog.c –fPIC -L. –lpriv1 –lmyputs -Wl,-rpath \
 /home/twd/libs
$ ldd prog
linux-vdso.so.1 => (0x00007fff235ff000)
libmyputs.so => /home/twd/libs/libmyputs.so (0x00007f821370f000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f821314e000)
/lib64/ld-linux-x86-64.so.2 (0x00007f8213912000)
$./prog
My puts: sub1
My puts: sub2
My puts: sub3

CS33 Intro to Computer Systems XXXVII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Order Still Matters

• All shared objects listed in the executable are
loaded into the address space
– whether needed or not

• ld-linux.so will find anything that’s there
– looks in the order in which shared objects are listed

CS33 Intro to Computer Systems XXXVII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Problem

• You've put together a library of useful
functions
– libgoodstuff.so

• Lots of people are using it
• It occurs to you that you can make it even

better by adding an extra argument to a few of
the functions
– doing so will break all programs that currently use

these functions
• You need a means so that old code will

continue to use the old version, but new code
will use the new version

CS33 Intro to Computer Systems XXXVII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Solution

• The two versions of your program coexist
– libgoodstuff.so.1
– libgoodstuff.so.2

• You arrange so that old code uses the old
version, new code uses the new

• Most users of your code donʼt really want to
have to care about version numbers
– they want always to link with libgoodstuff.so
– and get the version that was current when they

wrote their programs

Here we are creating two versions of libgoodstuff, in libgoodstuff.so.1 and in
libgoodstuff.so.2. Each is created by invoking the loader directly via the “ld” command.
The “-soname” flag tells the loader to include in the shared object its name, which is the
string following the flag (“libgoodstuff.so.1” in the first call to ld). The effect of the “ln –s”
command is to create a new name (its last argument) in the file system that refers to the
same file as that referred to by ln’s next-to-last argument. Thus, after the first call to ln –
s, libgoodstuff.so refers to the same file as does libgoodstuff.so.1. Thus, the second
invocation of gcc, where it refers to –lgoodstuff (which expands to libgoodstuff.so), is
actually referring to libgoodstuff.so.1.

Then we create a new version of goodstuff and from it a new shared object called
libgoodstuff.so.2 (i.e., version 2). The call to “rm” removes the name libgoodstuff.so (but
not the file it refers to, which is still referred to by libgoodstuff.so.1). Then ln is called
again to make libgoodstuff.so now refer to the same file as does libgoodstuff.so.2. Thus,
when prog2 is linked, the reference to –lgoodstuff expands to libgoodstuff.so, which now
refers to the same file as does libgoodstuff.so.2.

If prog1 is now run, it refers to libgoodstuff.so.1, so it gets the old version (version 1),
but if prog2 is run, it refers to libgoodstuff.so.2, so it gets the new version (version 2).
Thus, programs using both versions of goodstuff can coexist.

CS33 Intro to Computer Systems XXXVII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Versioning

$ gcc –fPIC -c goodstuff.c
$ ld -shared -soname libgoodstuff.so.1 \
-o libgoodstuff.so.1 goodstuff.o
$ ln -s libgoodstuff.so.1 libgoodstuff.so
$ gcc -o prog1 prog1.c -L. -lgoodstuff \
–Wl,-rpath .
$ vi goodstuff.c
$ gcc –fPIC -c goodstuff.c
$ ld -shared -soname libgoodstuff.so.2 \
-o libgoodstuff.so.2 goodstuff.o
$ rm -f libgoodstuff.so
$ ln -s libgoodstuff.so.2 libgoodstuff.so
$ gcc -o prog2 prog2.c -L. -lgoodstuff \
-Wl,-rpath .

The idea expressed in the slide is that when prog calls puts, control first goes
to the wrapper, which then calls puts.

Thus references to puts from within prog actually refer to wrapper. But if we
do this uniformly, replacing all references to puts with wrapper, how does
wrapper call puts?

CS33 Intro to Computer Systems XXXVII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper

__wrap_puts is the “wrapper” for puts. __real_puts is the “real” puts function.
What we want is for calls to puts to go to __wrap_puts, and calls to
__real_puts to go to the real puts routine (in stdio).

CS33 Intro to Computer Systems XXXVII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {
 int __real_puts(const char *);

 write(2, "calling myputs: ", 16);
 return __real_puts(s);
}

The arguments to gcc shown in the slide cause what we asked for in the
previous slide to actually happen. Calls to puts go to __wrap_puts, and calls to
__real_puts go to the real puts function.

CS33 Intro to Computer Systems XXXVII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c
int main() {
 puts("This is a boring message.");
 return 0;
}
$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c
$./tputs
calling myputs: This is a boring message.
$

An alternative approach to wrapping is to invoke ld-linux.so directly from the
program, and have it find the real puts function. The call to dlsym above
directly invokes ld-linux.so, asking it (as given by the first argument) to find
the next definition of puts in the list of libraries. It returns the location of that
routine, which is then called (*pptr).

CS33 Intro to Computer Systems XXXVII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

 write(2, "calling myputs: ", 16);
 return (*pptr)(s);
}

CS33 Intro to Computer Systems XXXVII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second)

occurrence of the symbol

CS33 Intro to Computer Systems XXXVII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first)

when program is started

CS33 Intro to Computer Systems XXXVII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,
 char *const argv[],
 char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin

Here we add "LD_PRELOAD=./libmyputs.so.1" to the environment. The export
command instructs the shell to supply this as part of the environment for the
commands it runs.

CS33 Intro to Computer Systems XXXVII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c
$./tputs
This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD
$./tputs
calling myputs: This is a boring message.
$

