
CS33 Intro to Computer Systems XXXVII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VIII

CS33 Intro to Computer Systems XXXVII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Garbage Collection

• malloc − free
– when a malloc’d block is no longer needed (it’s

garbage), it’s (eventually) automatically returned to
the free list
» how is this done?
» can it be done by one thread, while other threads are

calling malloc and using the memory?

CS33 Intro to Computer Systems XXXVII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Identifying Garbage – Reference
Counts

• Assume all memory blocks are nodes in a
graph, each with two links
– for each block, keep reference counts: how many

other blocks point to it
– if reference count is 0, then no node points to it and

it’s garbage
» certain nodes are designated as roots—it’s ok if no

nodes point to them

Root

11

2

11

1

CS33 Intro to Computer Systems XXXVII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

If we can guarantee that the graph formed by
memory nodes has no cycles, then reference
counts form an effective means for identifying
garbage.
a) yes: a node is garbage if and only if its

reference count is 0
b) yes: if a node’s reference count is 0, it’s

garbage, but it might be necessary to
remove some garbage nodes to find others

c) no: a node could have a reference count of 0
and not be garbage

CS33 Intro to Computer Systems XXXVII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Identifying Garbage – Mark and
Sweep

• Identify all nodes that lie on paths that start
from a root

• All other nodes, being unreachable, are
garbage

CS33 Intro to Computer Systems XXXVII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Code

void mark(node_t *root) {
 if (!node->visited) {
 node->visited = 1;
 if (node->left) mark(node->left);
 if (node->right) mark(node->right);
 }
}

void sweep(void) {
 for (int i=0; i<M; i++) {
 if (node[i].visited == 0)
 free(node);
 node[i].visited = 0;

 }

}

CS33 Intro to Computer Systems XXXVII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mutator

Threads that modify the graph (perhaps
malloc’ing new nodes) are called mutators.

• Mutators perform mutate operations on
individual nodes. They might
• change either the left or right link of a node to point

to a non-garbage node, possibly resulting in the old
target becoming garbage

• cause a node to point to a newly allocated node
• cause a link to be NULL

Can the mutator and the garbage collector run
in parallel as separate threads?

CS33 Intro to Computer Systems XXXVII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Problem

Root

A B

C

CS33 Intro to Computer Systems XXXVII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Fix

void mutate(node_t *node, int dir, node_t *new_target) {
 if (dir == LEFT) {
 node->left.visited = 1;
 node->left = new_target;

 } else { // dir == RIGHT
 node->right.visited = 1;

 node->right = new_target;
 }

}

CS33 Intro to Computer Systems XXXVII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

The fix:
a) allows the mutator and GC to correctly run

concurrently
b) solves the specific problem of two slides

ago, but leaves other problems unsolved
c) solves nothing

CS33 Intro to Computer Systems XXXVII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Problem++
Root

A B

C

D

CS33 Intro to Computer Systems XXXVII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Coping

• When a node is marked “visited”, we must
mark all nodes reachable from it

• It’s necessary to distinguish nodes that have
been visited and whose direct descendants
have also been marked visited from those
that have only been visited
– visited = 0: not visited
– visited = 1: visited, but status of direct descendants

is unknown
– visited = 2: visited and direct descendants are

marked visited (1 or 2)
• Ultimately, all nodes will have visited values

of 0 (meaning garbage) or 2 (nongarbage)

CS33 Intro to Computer Systems XXXVII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

New Mark Function
void mark(void) {
 root->visited = 1;

 i=0;
 k=M; // total number of nodes in memory

 while (k>0) {
 if (node[i].visited == 1) {
 k = M; // reset k so all nodes are reexamined
 visit(node[i].left);

 visit(node[i].right);

 node[i].visited = 2;
 } else
 k--; // the node’s visited value was 0 or 2
 i = i++ mod M; // not legal C syntax
 }
}

CS33 Intro to Computer Systems XXXVII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

New Mutate Function

void mutate(node_t *node, int dir, node_t *new_target) {
 if (dir == LEFT) {
 visit(node->left);
 node->left = new_target;

 } else { // dir == RIGHT
 visit(node->right);

 node->right = new_target;
 }

}

CS33 Intro to Computer Systems XXXVII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 3

Assume that each line of code is executed
atomically. Suppose, during the execution of
mark by the GC thread, a mutator thread causes
a node (that previously was not garbage) to
become garbage. That node’s visited field will
become 0 (causing it to be treated as garbage)
a) during the current execution of mark
b) during the upcoming execution of sweep
c) during the next execution of mark
d) never

CS33 Intro to Computer Systems XXXVII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Visit and Sweep Functions

void visit(node_t *node) {
 if (node->visited == 0)

 node->visited = 1;

}

void sweep(void) {
 for (int i=0; i<M; i++) {
 if (node[i].visited == 0)
 free(node);

 node[i].visited = 0;

 }

}

Quiz 4
When sweep is being
executed, will it
encounter any nodes
for which visited is 1?
a) yes
b) no

CS33 Intro to Computer Systems XXXVII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries

CS33 Intro to Computer Systems XXXVII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Libraries

• Collections of useful stuff
• Allow you to:

– incorporate items into your program
– substitute new stuff for existing items

• Often ugly …

CS33 Intro to Computer Systems XXXVII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Library

$ gcc -c sub1.c sub2.c sub3.c

$ ls

sub1.c sub2.c sub3.c
sub1.o sub2.o sub3.o

$ ar cr libpriv1.a sub1.o sub2.o sub3.o

$ ar t libpriv1.a

sub1.o
sub2.o

sub3.o

$

CS33 Intro to Computer Systems XXXVII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Using a Library

$ cat prog.c
int main() {
 sub1();
 sub2();

 sub3();

}
$ cat sub1.c

void sub1() {

 puts("sub1");
}

$ gcc -o prog prog.c -L. -lpriv1
$./prog

sub1
sub2

sub3

Where does puts come from?

$ gcc –o prog prog.c –L. \
 -lpriv1 \
 –L/lib/x86_64-linux-gnu -lc

CS33 Intro to Computer Systems XXXVII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Static-Linking: What’s in the
Executable

• ld puts in the executable:
» (assuming all .c files have been compiled into .o files)

– all .o files from argument list (including those newly
compiled)

– .o files from archives as needed to satisfy
unresolved references
» some may have their own unresolved references that

may need to be resolved from additional .o files from
archives

» each archive processed just once (as ordered in
argument list)
• order matters!

CS33 Intro to Computer Systems XXXVII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ cat prog2.c

int main() {
 void func1();
 func1();

 return 0;
}

$ cat func1.c
void func1() {
 void func2();
 func2();
}

$ cat func2.c

void func2() {
}

CS33 Intro to Computer Systems XXXVII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Order Matters ...

$ ar t libf1.a

func1.o

$ ar t libf2.a

func2.o

$ gcc –o prog2 prog2.c -L. –lf1 –lf2

$

$ gcc –o prog2 prog2.c -L. –lf2 –lf1

./libf1.a(sub1.o): In function `func1':

func1.c:(.text+0xa): undefined reference to `func2'

collect2: error: ld returned 1 exit status

CS33 Intro to Computer Systems XXXVII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Substitution

$ cat myputs.c

int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));

 write(1, "\n", 1);
 return 1;
}
$ gcc –c myputs.c

$ ar cr libmyputs.a myputs.o

$ gcc -o prog prog.c -L. –lpriv1 -lmyputs
$./prog

My puts: sub1

My puts: sub2

My puts: sub3

CS33 Intro to Computer Systems XXXVII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use
printf?

CS33 Intro to Computer Systems XXXVII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run

CS33 Intro to Computer Systems XXXVII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all

CS33 Intro to Computer Systems XXXVII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a”
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking

and relocation steps, if necessary

CS33 Intro to Computer Systems XXXVII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Creating a Shared Library

$ gcc -fPIC -c myputs.c

$ ld -shared -o libmyputs.so myputs.o

$ gcc -o prog prog.c –fPIC -L. –lpriv1 –lmyputs -Wl,-rpath \
 /home/twd/libs

$ ldd prog

linux-vdso.so.1 => (0x00007fff235ff000)

libmyputs.so => /home/twd/libs/libmyputs.so (0x00007f821370f000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f821314e000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8213912000)

$./prog
My puts: sub1

My puts: sub2

My puts: sub3

CS33 Intro to Computer Systems XXXVII–30 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Order Still Matters

• All shared objects listed in the executable are
loaded into the address space
– whether needed or not

• ld-linux.so will find anything that’s there
– looks in the order in which shared objects are listed

CS33 Intro to Computer Systems XXXVII–31 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Problem

• You've put together a library of useful
functions
– libgoodstuff.so

• Lots of people are using it
• It occurs to you that you can make it even

better by adding an extra argument to a few of
the functions
– doing so will break all programs that currently use

these functions
• You need a means so that old code will

continue to use the old version, but new code
will use the new version

CS33 Intro to Computer Systems XXXVII–32 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

A Solution

• The two versions of your program coexist
– libgoodstuff.so.1
– libgoodstuff.so.2

• You arrange so that old code uses the old
version, new code uses the new

• Most users of your code donʼt really want to
have to care about version numbers
– they want always to link with libgoodstuff.so
– and get the version that was current when they

wrote their programs

CS33 Intro to Computer Systems XXXVII–33 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Versioning

$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.1 \

-o libgoodstuff.so.1 goodstuff.o
$ ln -s libgoodstuff.so.1 libgoodstuff.so

$ gcc -o prog1 prog1.c -L. -lgoodstuff \

–Wl,-rpath .

$ vi goodstuff.c
$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.2 \

-o libgoodstuff.so.2 goodstuff.o
$ rm -f libgoodstuff.so

$ ln -s libgoodstuff.so.2 libgoodstuff.so

$ gcc -o prog2 prog2.c -L. -lgoodstuff \

-Wl,-rpath .

CS33 Intro to Computer Systems XXXVII–34 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper

CS33 Intro to Computer Systems XXXVII–35 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {
 int __real_puts(const char *);

 write(2, "calling myputs: ", 16);

 return __real_puts(s);
}

CS33 Intro to Computer Systems XXXVII–36 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c

int main() {
 puts("This is a boring message.");
 return 0;
}

$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c

$./tputs
calling myputs: This is a boring message.

$

CS33 Intro to Computer Systems XXXVII–37 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

 write(2, "calling myputs: ", 16);

 return (*pptr)(s);
}

CS33 Intro to Computer Systems XXXVII–38 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second)

occurrence of the symbol

CS33 Intro to Computer Systems XXXVII–39 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first)

when program is started

CS33 Intro to Computer Systems XXXVII–40 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,
 char *const argv[],
 char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin

CS33 Intro to Computer Systems XXXVII–41 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c

$./tputs

This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD

$./tputs

calling myputs: This is a boring message.

$

