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CS 33
Multithreaded Programming VIII
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Garbage Collection

• malloc − free
– when a malloc’d block is no longer needed (it’s 

garbage), it’s (eventually) automatically returned to 
the free list
» how is this done?
» can it be done by one thread, while other threads are 

calling malloc and using the memory?
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Identifying Garbage – Reference 
Counts

• Assume all memory blocks are nodes in a 
graph, each with two links
– for each block, keep reference counts: how many 

other blocks point to it
– if reference count is 0, then no node points to it and 

it’s garbage
» certain nodes are designated as roots—it’s ok if no 

nodes point to them
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Quiz 1

If we can guarantee that the graph formed by 
memory nodes has no cycles, then reference 
counts form an effective means for identifying 
garbage.
a) yes: a node is garbage if and only if its 

reference count is 0
b) yes: if a node’s reference count is 0, it’s 

garbage, but it might be necessary to 
remove some garbage nodes to find others

c) no: a node could have a reference count of 0 
and not be garbage
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Identifying Garbage – Mark and 
Sweep

• Identify all nodes that lie on paths that start 
from a root

• All other nodes, being unreachable, are 
garbage
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Code

void mark(node_t *root) {
   if (!node->visited) {
      node->visited = 1;
      if (node->left) mark(node->left);
      if (node->right) mark(node->right);
   }
}

void sweep(void) {
   for (int i=0; i<M; i++) {
      if (node[i].visited == 0)
         free(node);
      node[i].visited = 0;

   }

}
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Mutator

Threads that modify the graph (perhaps 
malloc’ing new nodes) are called mutators.

• Mutators perform mutate operations on 
individual nodes. They might
• change either the left or right link of a node to point 

to a non-garbage node, possibly resulting in the old 
target becoming garbage

• cause a node to point to a newly allocated node
• cause a link to be NULL

Can the mutator and the garbage collector run 
in parallel as separate threads?
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A Problem

Root

A B

C
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A Fix

void mutate(node_t *node, int dir, node_t *new_target) {
   if (dir == LEFT) {
      node->left.visited = 1;
      node->left = new_target;

   } else { // dir == RIGHT
      node->right.visited = 1;

      node->right = new_target;
   }

}
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Quiz 2

The fix:
a) allows the mutator and GC to correctly run 

concurrently
b) solves the specific problem of two slides 

ago, but leaves other problems unsolved
c) solves nothing
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Problem++
Root
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Coping

• When a node is marked “visited”, we must 
mark all nodes reachable from it

• It’s necessary to distinguish nodes that have 
been visited and whose direct descendants 
have also been marked visited from those 
that have only been visited
– visited = 0: not visited
– visited = 1: visited, but status of direct descendants 

is unknown
– visited = 2: visited and direct descendants are 

marked visited (1 or 2)
• Ultimately, all nodes will have visited values 

of 0 (meaning garbage) or 2 (nongarbage)
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New Mark Function
void mark(void) {
   root->visited = 1;

   i=0;
   k=M; // total number of nodes in memory

   while (k>0) {
      if (node[i].visited == 1) {
         k = M; // reset k so all nodes are reexamined 
         visit(node[i].left);

 visit(node[i].right);

         node[i].visited = 2;
      } else
         k--; // the node’s visited value was 0 or 2
    i = i++ mod M; // not legal C syntax
   }
}
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New Mutate Function

void mutate(node_t *node, int dir, node_t *new_target) {
   if (dir == LEFT) {
      visit(node->left);
      node->left = new_target;

   } else { // dir == RIGHT
      visit(node->right);

      node->right = new_target;
   }

}
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Quiz 3

Assume that each line of code is executed 
atomically. Suppose, during the execution of 
mark by the GC thread, a mutator thread causes 
a node (that previously was not garbage) to 
become garbage. That node’s visited field will 
become 0 (causing it to be treated as garbage)
a) during the current execution of mark
b) during the upcoming execution of sweep
c) during the next execution of mark
d) never
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Visit and Sweep Functions

void visit(node_t *node) {
   if (node->visited == 0)

      node->visited = 1;

}

void sweep(void) {
   for (int i=0; i<M; i++) {
      if (node[i].visited == 0)
         free(node);

      node[i].visited = 0;

   }

}

Quiz 4
When sweep is being 
executed, will it 
encounter any nodes 
for which visited is 1?
a) yes
b) no
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CS 33
Linking and Libraries
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Libraries

• Collections of useful stuff
• Allow you to:

– incorporate items into your program
– substitute new stuff for existing items

• Often ugly …
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Creating a Library

$ gcc -c sub1.c sub2.c sub3.c

$ ls

sub1.c  sub2.c  sub3.c
sub1.o  sub2.o  sub3.o

$ ar cr libpriv1.a sub1.o sub2.o sub3.o

$ ar t libpriv1.a

sub1.o
sub2.o

sub3.o

$ 
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Using a Library

$ cat prog.c
int main() {
  sub1();
  sub2();

  sub3();

}
$ cat sub1.c

void sub1() {

  puts("sub1");
}

$ gcc -o prog prog.c -L. -lpriv1
$ ./prog

sub1
sub2

sub3

Where does puts come from?

$ gcc –o prog prog.c –L. \
  -lpriv1 \
  –L/lib/x86_64-linux-gnu -lc
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Static-Linking: What’s in the 
Executable

• ld puts in the executable:
» (assuming all .c files have been compiled into .o files)

– all .o files from argument list (including those newly 
compiled)

– .o files from archives as needed to satisfy 
unresolved references
» some may have their own unresolved references that 

may need to be resolved from additional .o files from 
archives

» each archive processed just once (as ordered in 
argument list)
• order matters!
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Example

$ cat prog2.c

int main() {
  void func1();
  func1();

  return 0;
}

$ cat func1.c
void func1() {
  void func2();
  func2();
}

$ cat func2.c

void func2() {
}
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Order Matters ...

$ ar t libf1.a

func1.o

$ ar t libf2.a

func2.o

$ gcc –o prog2 prog2.c -L. –lf1 –lf2

$

$ gcc –o prog2 prog2.c -L. –lf2 –lf1

./libf1.a(sub1.o): In function `func1':

func1.c:(.text+0xa): undefined reference to `func2'

collect2: error: ld returned 1 exit status
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Substitution

$ cat myputs.c

int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));

 write(1, "\n", 1);
 return 1;
}
$ gcc –c myputs.c

$ ar cr libmyputs.a myputs.o

$ gcc -o prog prog.c -L. –lpriv1 -lmyputs
$ ./prog

My puts: sub1

My puts: sub2

My puts: sub3
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An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use 
printf?
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Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run
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Benefits

• Without dynamic linking
– every executable contains copy of printf (and other 

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all
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Shared Objects: Unix’s Dynamic 
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a” 
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking 

and relocation steps, if necessary
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Creating a Shared Library

$ gcc -fPIC -c myputs.c

$ ld -shared -o libmyputs.so myputs.o

$ gcc -o prog prog.c –fPIC -L. –lpriv1 –lmyputs -Wl,-rpath \ 
  /home/twd/libs

$ ldd prog

linux-vdso.so.1 =>  (0x00007fff235ff000)

libmyputs.so => /home/twd/libs/libmyputs.so (0x00007f821370f000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f821314e000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8213912000)

$ ./prog
My puts: sub1

My puts: sub2

My puts: sub3
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Order Still Matters

• All shared objects listed in the executable are 
loaded into the address space
– whether needed or not

• ld-linux.so will find anything that’s there
– looks in the order in which shared objects are listed
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A Problem

• You've put together a library of useful 
functions
– libgoodstuff.so

• Lots of people are using it
• It occurs to you that you can make it even 

better by adding an extra argument to a few of 
the functions
– doing so will break all programs that currently use 

these functions
• You need a means so that old code will 

continue to use the old version, but new code 
will use the new version
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A Solution

• The two versions of your program coexist
– libgoodstuff.so.1
– libgoodstuff.so.2

• You arrange so that old code uses the old 
version, new code uses the new

• Most users of your code donʼt really want to 
have to care about version numbers
– they want always to link with libgoodstuff.so
– and get the version that was current when they 

wrote their programs
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Versioning

$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.1 \

-o libgoodstuff.so.1 goodstuff.o
$ ln -s libgoodstuff.so.1 libgoodstuff.so

$ gcc -o prog1 prog1.c -L. -lgoodstuff \

–Wl,-rpath .

$ vi goodstuff.c
$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.2 \

-o libgoodstuff.so.2 goodstuff.o
$ rm -f libgoodstuff.so

$ ln -s libgoodstuff.so.2 libgoodstuff.so

$ gcc -o prog2 prog2.c -L. -lgoodstuff \

-Wl,-rpath .
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Interpositioning

prog

puts

wrapper
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How To …

int __wrap_puts(const char *s) {
  int __real_puts(const char *);

  write(2, "calling myputs: ", 16);

  return __real_puts(s);
}
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Compiling/Linking It

$ cat tputs.c

int main() {
 puts("This is a boring message.");
 return 0;
}

$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c

$ ./tputs
calling myputs: This is a boring message.

$
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How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
  int (*pptr)(const char *);

  pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

  write(2, "calling myputs: ", 16);

  return (*pptr)(s);
}
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What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second) 

occurrence of the symbol
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Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first) 

when program is started
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Environment Variables

• Another form of exec
–int execve(const char *filename,
           char *const argv[],
           char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin
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Example

$ gcc -o tputs tputs.c

$ ./tputs

This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD

$ ./tputs

calling myputs: This is a boring message.

$


