
CS33 Intro to Computer Systems XXXVIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries (2)

The idea expressed in the slide is that when prog calls puts, control first goes
to the wrapper, which then calls puts.

Thus references to puts from within prog actually refer to wrapper. But if we
do this uniformly, replacing all references to puts with wrapper, how does
wrapper call puts?

CS33 Intro to Computer Systems XXXVIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper

__wrap_puts is the “wrapper” for puts. __real_puts is the “real” puts function.
What we want is for calls to puts to go to __wrap_puts, and calls to
__real_puts to go to the real puts routine (in stdio).

CS33 Intro to Computer Systems XXXVIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {
 int __real_puts(const char *);

 write(2, "calling myputs: ", 16);
 return __real_puts(s);
}

The arguments to gcc shown in the slide cause what we asked for in the
previous slide to actually happen. Calls to puts go to __wrap_puts, and calls to
__real_puts go to the real puts function.

CS33 Intro to Computer Systems XXXVIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c
int main() {
 puts("This is a boring message.");
 return 0;
}
$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c
$./tputs
calling myputs: This is a boring message.
$

An alternative approach to wrapping is to invoke ld-linux.so directly from the
program, and have it find the real puts function. The call to dlsym above
directly invokes ld-linux.so, asking it (as given by the first argument) to find
the next definition of puts in the list of libraries. It returns the location of that
routine, which is then called (*pptr).

CS33 Intro to Computer Systems XXXVIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

 write(2, "calling myputs: ", 16);
 return (*pptr)(s);
}

CS33 Intro to Computer Systems XXXVIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second)

occurrence of the symbol

CS33 Intro to Computer Systems XXXVIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first)

when program is started

CS33 Intro to Computer Systems XXXVIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,
 char *const argv[],
 char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin

Here we add "LD_PRELOAD=./libmyputs.so.1" to the environment. The export
command instructs the shell to supply this as part of the environment for the
commands it runs.

CS33 Intro to Computer Systems XXXVIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c
$./tputs
This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD
$./tputs
calling myputs: This is a boring message.
$

CS33 Intro to Computer Systems XXXVIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mmapping Libraries

text

data
bss

dynamic

stack

available for
mmap

C library
my lib

CS33 Intro to Computer Systems XXXVIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Problem

• How is relocation handled?

One simple approach to relocation is to avoid it: everything is pre-assigned a location in
memory–this is known as pre-relocation.

Assuming we’re using pre-relocation, the C library and the math library would be
assumed to be in virtual memory at their pre-assigned locations. In the slide, these
would be starting at locations 1,000,000 and 3,000,000, respectively. Let’s suppose
printf, which is in the C library, is at location 1,000,400. Thus, calls to printf at static
link time could be linked to that address. If the math library also contains calls to printf,
these would be linked to that address as well. The C library might contain a global
identifier, such as stdfiles. Its address would also be known.

CS33 Intro to Computer Systems XXXVIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pre-Relocation

C library

math library

1,000,000

3,000,000

printf: 1,000,400

call printf
1000400

stdfiles: 1,200,600
&stdfiles

call printf

Pre-relocation doesn’t work if we have two libraries pre-assigned such that they overlap.
If so, at least one of the two will have to be moved, necessitating relocation.

CS33 Intro to Computer Systems XXXVIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

CS33 Intro to Computer Systems XXXVIII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

8,000,000

CS33 Intro to Computer Systems XXXVIII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

We need to relocate all references to Mary’s
library in my library. What option should we
give to mmap when we map my library into our
address space?

a) the MAP_PRIVATE option
b) the MAP_SHARED option
c) mmap can’t be used in this situation

CS33 Intro to Computer Systems XXXVIII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relocation Revisited

• Modify shared code to effect relocation
– result is no longer shared!

• Separate shared code from (unshared)
addresses
– position-independent code (PIC)
– code can be placed anywhere
– addresses in separate private section

» pointed to by a register

The C library (and other libraries) can be mapped into different locations in different
processes’ address spaces.

CS33 Intro to Computer Systems XXXVIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping Shared Objects

Process A

printf()

Process B

printf()
stdio

printf()

For this slide, we assume relocation is dealt with through the use of position-
independent code (PIC).

CS33 Intro to Computer Systems XXXVIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping printf into the Address Space
• Printf’s text

– read-only
– can it be shared?

» yes: use MAP_SHARED
• Printf’s data

– read-write
– not shared with other processes
– initial values come from file
– can mmap be used?

» MAP_SHARED wouldn’t work
• changes made to data by one process would be

seen by others
» MAP_PRIVATE does work!

• mapped region is initialized from file
• changes are private

CS33 Intro to Computer Systems XXXVIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping printf

page 6
page 7

page 31
page 32

page 3
page 4

page 41
page 42

Process 1

Process 2

printf
text

printf
data

printf
text

printf
data

Real Memory

P1’s printf
page 2

P1’s printf
page 3

P2’s printf
page 2

printf
page 0

Disk

page 0

page 1

page 2

page 3

printf

text

data

printf
page 1

To provide position-independent code on x86-64, ELF requires three data structures for
each dynamic executable (i.e., the program binary loaded by exec) and shared object: the
procedure-linkage table, the global-offset table, and the relocation table. To simplify
discussion, we refer to dynamic executables and shared objects as modules. The
procedure linkage table contains the code that’s actually called when control is to be
transferred to an externally defined routine. It is shared by all processes using the
associated executable or object, and makes use of data in the global-object table to link
the caller to the called program. Each process has its own private copy of each global-
object table. It contains the relocated addresses of all externally defined symbols.
Finally, the relocation table contains much information about each module. What is
used for linking is relocation information and the symbol table, as we explain in the next
few slides.

How things work is similar for other architectures, but definitely not the same.

CS33 Intro to Computer Systems XXXVIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Position-Independent Code

• Produced by gcc when given the –fPIC flag
• Processor-dependent; x86-64:

– each dynamic executable and shared object has:
» procedure-linkage table

• shared, read-only executable code
• essentially stubs for calling functions

» global-offset table
• private, read-write data
• relocated dynamically for each process

» relocation table
• shared, read-only data
• contains relocation info and symbol table

To establish position-independent references to global variables, the compiler produces,
for each module, a global-offset table. Modules refer to global variables indirectly by
looking up their addresses in the table, using PC-relative addressing. The item needed is
at some fixed offset from the beginning of the table. When the module is loaded into
memory, ld-linux.so is responsible for putting into it the actual addresses of all the
needed global variables.

CS33 Intro to Computer Systems XXXVIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global-Offset Table:
Data References

errno address

myglob address

Global Offset Table

errno

myglob

CS33 Intro to Computer Systems XXXVIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Functions in Shared Objects

• Lots of them
• Many are never used
• Fix up linkages on demand

The top half of the slide contains an excerpt from a C program. For the bottom half,
we've compiled the program and have printed what "objdump –d" produces for main.
Note that the call to puts is actually a call to "puts@plt", which is a reference to the
procedure linkage table.

CS33 Intro to Computer Systems XXXVIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Example
int main() {
 puts("Hello world\n");

 …
 return 0;
}

00000000000006b0 <main>:
 6b0: 55 push %rbp
 6b1: 48 89 e5 mov %rsp,%rbp
 6b4: 48 8d 3d 99 00 00 00 lea 0x99(%rip),%rdi
 6bb: e8 a0 fe ff ff callq 560 <puts@plt>
 …

Dealing with references to external procedures is considerably more complicated than
dealing with references to external data. This slide shows the procedure linkage table,
global offset table, and relocation information for a module that contains references to
external procedures puts and name2. Let’s follow a call to procedure puts. The general
idea is before the first call to puts, the actual address of the puts procedure is not
recorded in the global-offset table, Instead, the first call to puts actually invokes ld-
linux.so, which is passed parameters indicating what is really wanted. It then finds puts
and updates the global-offset table so that things are more direct on subsequent calls.

To make this happen, references from the module to puts are statically linked to entry
.puts in the procedure-linkage table. This entry contains an unconditional jump (via PC-
relative addressing) to the address contained in the puts offset of the global-offset table.
Initially this address is of the instruction following the jump instruction, which contains
code that pushes onto the stack the offset of the puts entry in the relocation table
(which contains a reference to the name, “puts”, as well as the offset within the global-
offset-table of where the actual address of puts will be written). The next instruction is
an unconditional jump to the beginning of the procedure-linkage table, entry .PLT0.
Here there’s code that pushes onto the stack the second 64-bit word of the global-offset
table, which contains a value identifying this module. The following instruction is an
unconditional jump to the address in the third word of the global-offset table, which is
conveniently the address of ld-linux.so. Thus, control finally passes to ld-linux.so, which
looks back on the stack and determines which module has called it and what that
module really wants to call. It figures this out based on the module-identification word
and the relocation table entry, which contains the offset of the puts entry in the global-
offset table (which is what must be updated) and the index of puts in the symbol table
(so it knows the name of what it must locate).

CS33 Intro to Computer Systems XXXVIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Before Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:
 .quad .putsnext
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

Finally, ld-linux.so writes the actual address of the puts procedure into the puts entry of
the global-offset table, and, after unwinding the stack a bit, passes control to puts. On
subsequent calls by the module to puts, since the global-offset table now contains puts’s
address, control goes to it more directly, without an invocation of ld-linux.so.

CS33 Intro to Computer Systems XXXVIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

After Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:

 .quad puts
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

CS33 Intro to Computer Systems XXXVIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

On the second and subsequent calls to puts

a) control goes directly to puts
b) control goes to an instruction that jumps

to puts
c) control still goes to ld-linux.so, but it now

transfers control directly to puts

CS33 Intro to Computer Systems XXXVIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

You’ll Soon Finish CS 33 …

• You might
– celebrate

– take another systems course
» 320
» 1380
» 1660
» 1670
» 1680

– become a 300 TA

2660 is for graduate students only and combines 1660 and 1620.

2670 is for graduate students only and combines 1670 and 1690.

CS33 Intro to Computer Systems XXXVIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester
• CS 320 (Intro to Software Engineering)

– you’ve mastered low-level systems programming
– now do things at a higher level
– learn software-engineering techniques using Java, XML,

etc.
• CS 1380 (Distributed Systems)

– you now know how things work on one computer
– what if you’ve got lots of computers?
– some may have crashed, others may have been taken

over by your worst (and smartest) enemy
• CS 1660/1620/2660 (Computer Systems Security)

– liked buffer?
– you’ll really like 1660

• CS 1670/1690/2670 (Operating Systems)
– still mystified about what the OS does?
– write your own!

CS33 Intro to Computer Systems XXXVIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The End
Well, not quite …

Database is due on 12/13

Happy Coding and Happy Holidays!

