
CS33 Intro to Computer Systems XXXVIII–1 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries (2)

CS33 Intro to Computer Systems XXXVIII–2 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper

CS33 Intro to Computer Systems XXXVIII–3 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {
 int __real_puts(const char *);

 write(2, "calling myputs: ", 16);

 return __real_puts(s);
}

CS33 Intro to Computer Systems XXXVIII–4 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c

int main() {
 puts("This is a boring message.");
 return 0;
}

$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c

$./tputs
calling myputs: This is a boring message.

$

CS33 Intro to Computer Systems XXXVIII–5 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

 write(2, "calling myputs: ", 16);

 return (*pptr)(s);
}

CS33 Intro to Computer Systems XXXVIII–6 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second)

occurrence of the symbol

CS33 Intro to Computer Systems XXXVIII–7 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first)

when program is started

CS33 Intro to Computer Systems XXXVIII–8 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,
 char *const argv[],
 char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin

CS33 Intro to Computer Systems XXXVIII–9 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c

$./tputs

This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD

$./tputs

calling myputs: This is a boring message.

$

CS33 Intro to Computer Systems XXXVIII–10 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mmapping Libraries

text

data
bss

dynamic

stack

available for
mmap

C library
my lib

CS33 Intro to Computer Systems XXXVIII–11 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Problem

• How is relocation handled?

CS33 Intro to Computer Systems XXXVIII–12 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Pre-Relocation

C library

math library

1,000,000

3,000,000

printf: 1,000,400

call printf
1000400

stdfiles: 1,200,600

&stdfiles

call printf

CS33 Intro to Computer Systems XXXVIII–13 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

CS33 Intro to Computer Systems XXXVIII–14 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

8,000,000

CS33 Intro to Computer Systems XXXVIII–15 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 1

We need to relocate all references to Mary’s
library in my library. What option should we
give to mmap when we map my library into our
address space?

a) the MAP_PRIVATE option
b) the MAP_SHARED option
c) mmap can’t be used in this situation

CS33 Intro to Computer Systems XXXVIII–16 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Relocation Revisited

• Modify shared code to effect relocation
– result is no longer shared!

• Separate shared code from (unshared)
addresses
– position-independent code (PIC)
– code can be placed anywhere
– addresses in separate private section

» pointed to by a register

CS33 Intro to Computer Systems XXXVIII–17 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping Shared Objects

Process A

printf()

Process B

printf()
stdio

printf()

CS33 Intro to Computer Systems XXXVIII–18 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping printf into the Address Space
• Printf’s text

– read-only
– can it be shared?

» yes: use MAP_SHARED

• Printf’s data
– read-write
– not shared with other processes
– initial values come from file
– can mmap be used?

» MAP_SHARED wouldn’t work
• changes made to data by one process would be

seen by others
» MAP_PRIVATE does work!

• mapped region is initialized from file
• changes are private

CS33 Intro to Computer Systems XXXVIII–19 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Mapping printf

page 6
page 7

page 31
page 32

page 3
page 4

page 41
page 42

Process 1

Process 2

printf
text

printf
data

printf
text

printf
data

Real Memory

P1’s printf
page 2
P1’s printf
page 3

P2’s printf
page 2

printf
page 0

Disk

page 0

page 1

page 2

page 3

printf

text

data

printf
page 1

CS33 Intro to Computer Systems XXXVIII–20 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Position-Independent Code

• Produced by gcc when given the –fPIC flag
• Processor-dependent; x86-64:

– each dynamic executable and shared object has:
» procedure-linkage table

• shared, read-only executable code
• essentially stubs for calling functions

» global-offset table
• private, read-write data
• relocated dynamically for each process

» relocation table
• shared, read-only data
• contains relocation info and symbol table

CS33 Intro to Computer Systems XXXVIII–21 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Global-Offset Table:
Data References

errno address

myglob address

Global Offset Table

errno

myglob

CS33 Intro to Computer Systems XXXVIII–22 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Functions in Shared Objects

• Lots of them
• Many are never used
• Fix up linkages on demand

CS33 Intro to Computer Systems XXXVIII–23 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

An Example
int main() {
 puts("Hello world\n");
 …
 return 0;
}

00000000000006b0 <main>:
 6b0: 55 push %rbp
 6b1: 48 89 e5 mov %rsp,%rbp
 6b4: 48 8d 3d 99 00 00 00 lea 0x99(%rip),%rdi
 6bb: e8 a0 fe ff ff callq 560 <puts@plt>
 …

CS33 Intro to Computer Systems XXXVIII–24 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Before Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:
 .quad .putsnext
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

CS33 Intro to Computer Systems XXXVIII–25 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

After Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:

 .quad puts
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

CS33 Intro to Computer Systems XXXVIII–26 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Quiz 2

On the second and subsequent calls to puts

a) control goes directly to puts
b) control goes to an instruction that jumps

to puts
c) control still goes to ld-linux.so, but it now

transfers control directly to puts

CS33 Intro to Computer Systems XXXVIII–27 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

You’ll Soon Finish CS 33 …

• You might
– celebrate

– take another systems course
» 320
» 1380
» 1660
» 1670
» 1680

– become a 300 TA

CS33 Intro to Computer Systems XXXVIII–28 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester
• CS 320 (Intro to Software Engineering)

– you’ve mastered low-level systems programming
– now do things at a higher level
– learn software-engineering techniques using Java, XML,

etc.
• CS 1380 (Distributed Systems)

– you now know how things work on one computer
– what if you’ve got lots of computers?
– some may have crashed, others may have been taken

over by your worst (and smartest) enemy
• CS 1660/1620/2660 (Computer Systems Security)

– liked buffer?
– you’ll really like 1660

• CS 1670/1690/2670 (Operating Systems)
– still mystified about what the OS does?
– write your own!

CS33 Intro to Computer Systems XXXVIII–29 Copyright © 2024 Thomas W. Doeppner. All rights reserved.

The End
Well, not quite …

Database is due on 12/13

Happy Coding and Happy Holidays!

